Skip to main content
Log in

Impacts of structuration on slope channel geomorphology and internal architecture: a Pleistocene feeder channel-ponded lobe system, offshore Niger Delta

  • Review Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

Impacts of structuration on the geomorphology and internal architecture of a Pleistocene feeder channel-ponded lobe system, Channel-1B (Ch-1B), on the continental slope of the Niger Delta, Nigeria, has been studied using a combination of 3D seismic stratigraphy and geomorphology methods. Mapping of diagnostic seismic facies, characterization of channel morphology and internal architecture, quantitative analysis, architectural element (AE) delineation, and reservoir modeling were carried out with the view to (1) establish Ch-1B geomorphology, internal architecture, and sediment fills, (2) investigate the influence of structuration on the evolution of internal architecture over time, and (3) assess the impact of the resulting internal architecture variability on reservoir modeling and development strategies. This study established a strong link between structuration and the evolution of feeder channel-ponded lobe systems. Evolution of Ch-1B has been summarized in five phases: (I) channel initiation dominated by sediment bypass and incision into fold-1, (II) major break in slope gradient resulting in deposition of ponded lobe-1, (III) complete fill of accommodation created in the ponded basin between folds 1 and 2, diversion of the channel axis westward by fold-2 and eventual incision into lobe-1 and fold-2 by the feeder channel as it adjusted to a new base level, (IV) deposition of lobe-2 in the footwall of fold-2, and (V) filling of the feeder channel, almost entirely, by turbidite muds thereby creating a channel plug that partitioned lobe-1 into two compartments. Understandings, from this work, of the impacts of structuration on geomorphology and internal architecture have been applied to AE delineation, reservoir modeling, and development strategies in terms of the number and type of wells needed to produce hydrocarbon in lobe-1 efficiently. Given that well costs represent a significant portion of field development costs, this study concludes that adequately delineating and modeling structurally influenced AEs will significantly affect field development economics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abreu V, Sullivan M, Pirmez C, Mohrig D (2003) Lateral accretion packages (LAPs): an important reservoir element in deep water sinuous channels. Mar Petrol Geol 20:631–648. https://doi.org/10.1016/j.marpetgeo.2003.08.003

    Article  Google Scholar 

  • Adeogba AA, McHargue TR, Graham SA (2005) Transient fan architecture and depositional controls from near-surface 3-D seismic data, Niger Delta continental slope. AAPG Bull 89:627–643. https://doi.org/10.1306/11200404025

    Article  Google Scholar 

  • Avbovbo AA (1978) Tertiary lithostratigraphy of Niger delta. AAPG Bull 62:295–306. https://doi.org/10.1306/C1EA482E-16C9-11D7-8645000102C1865D

    Article  Google Scholar 

  • Babonneau N, Savoye B, Cremer M, Klein B (2002) Morphology and architecture of the present canyon and channel system of the Zaire deep-sea fan. Mar Pet Geol 19:445–467

    Article  Google Scholar 

  • Beauboeuf RT, Friedmann SJ (2000) High-resolution seismic/sequence stratigraphic framework for the evolution of Pleistocene intra slope basins, Western Gulf of Mexico: depositional models and reservoir analogs. In: Weimer P, Slatt RM, Coleman J, Rosen NC, Nelson H, Bouma AH, Styzen MJ, Lawrence DT (eds) Deep-water reservoirs of the world. Gulf Coast Society of the Society of Economic Paleontologists and Mineralogists Foundation, 20th Annual Research Conference, pp 40–60

  • Bouchakour M, Zhao X, Ge J, Miclauş C, Yang B (2022) Evolution of submarine channel morphology in intra-slope mini-basin: 3D-seismic interpretation from offshore Niger Delta. Mar Pet Geol 146:1–24. https://doi.org/10.1016/j.marpetgeo.2022.105912

    Article  Google Scholar 

  • Bouchakour M, Zhao X, Ge J, Miclauş C, Yang B (2023) Lateral migration and channel bend morphology around growing folds (Niger Delta continental slope). Basin Res 00:1–39. https://doi.org/10.1111/bre.12750

    Article  Google Scholar 

  • Bouma AH (1962) Sedimentology of some flysch deposits: a graphic approach to facies interpretation. Elsevier, Amsterdam, p 168

    Google Scholar 

  • Carter RC, Gani MR, Roesler T, Sarwar A (2016) Submarine channel evolution linked to rising salt domes, Gulf of Mexico, USA. Sediment Geol 342:237–253. https://doi.org/10.1016/j.sedgeo.2016.06.021

    Article  Google Scholar 

  • Catterall V, Redfern J, Gawthorpe R, Hansen D, Thomas M (2010) Architectural style and quantification of a submarine channel-levee system located in a structurally complex area: offshore Nile Delta. J Sediment Res 80:991–1017

    Article  Google Scholar 

  • Catuneanu O, Abreu V, Bhattacharya JP, Blum MD, Dalrymple RW, Eriksson PG, Fielding CR, Fisher WL, Galloway WE, Gibling MR, Giles KA, Holbrook JM, Jordan R, St CG, Kendall C, Macurda B, Martinsen OJ, Miall AD, Neal JE, Nummedal D, Pomar L, Posamentier HW, Pratt BR, Sarg JF, Shanley KW, Steel RJ, Strasser A, Tucker ME, Winker C (2009) Towards the standardization of sequence stratigraphy. Earth Sc Rev 92(1–2):1–33. https://doi.org/10.1016/j.earscirev.2008.10.003

    Article  Google Scholar 

  • Catuneanu O (2006) Principles of sequence stratigraphy, 1st edn. Elsevier BV, Amsterdam

    Google Scholar 

  • Chima KI, Do Couto D, Leroux E, Gardin S, Hoggmasacall N, Rabineau M, Granjean D, Gorini C (2019) Seismic stratigraphy and depositional architecture of Neogene intraslope basins, offshore western Niger Delta. Mar Petrol Geol 109:449–468. https://doi.org/10.1016/j.marpetgeo.2019.06.030

    Article  Google Scholar 

  • Chima KI, Gorini C, Rabineau M, Granjeon Do Couto D, Leroux E, Hoggmascall N (2020) Pliocene and Pleistocene stratigraphic evolution of the western Niger Delta intraslope basins: a record of glacio-eustatic sea-level and basin tectonic forcings. Global Planet Change 195:103355. https://doi.org/10.1016/j.gloplacha.2020.103355

    Article  Google Scholar 

  • Clark IR, Cartwright JA (2009) Interactions between submarine channel systems and deformation in deep-water fold belts: examples from the Levant Basin, Eastern Mediterranean Sea. Mar Petrol Geol 26:1465–1482. https://doi.org/10.1016/j.marpetgeo.2009.05.004

    Article  Google Scholar 

  • Clark IR, Cartwright JA (2011) Key controls on submarine channel development in structurally active settings. Mar Petrol Geol 28:1333–1349

    Article  Google Scholar 

  • Clark IR, Cartwright JA (2012) Interactions between coeval sedimentation and deformation from the Niger Delta deep-water fold belt. SEPM Special Publ 99:243–267

    Google Scholar 

  • Corredor F, Shaw JH, Bilotti F (2005) Structural styles in the deep-water fold and thrust belts of the Niger Delta. AAPG Bull 89(6):753–780. https://doi.org/10.1306/02170504074

    Article  CAS  Google Scholar 

  • Damuth JE (1994) Neogene gravity tectonics and depositional processes on the deep Niger Delta continental margin. Mar Pet Geol 11:320–346. https://doi.org/10.1016/0264-8172(94)90053-1

    Article  Google Scholar 

  • De Ruig MJ, Hubbard SM (2006) Seismic facies and reservoir characteristics of a deep-marine channel belt in the Molasse foreland basin, Puchkirchen Formation, Austria. AAPG Bull 90:735–752. https://doi.org/10.1306/10210505018

    Article  Google Scholar 

  • Deptuck ME, Steffens GS, Barton M, Pirmez C (2003) Architecture and evolution of upper fan channel-belts on the Niger Delta slope and in the Arabian sea. Mar Pet Geol 20:649–676. https://doi.org/10.1016/j.marpetgeo.2003.01.004

    Article  Google Scholar 

  • Deptuck ME, Sylvester Z, Pirmez C, O’Byrne C (2007) Migration-aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major canyon, western Niger Delta slope. Mar Pet Geol 4:406–433. https://doi.org/10.1016/j.marpetgeo.2007.01.005

    Article  Google Scholar 

  • Dixon BT (2003) Slope channel morphology and depositional controls: the Pleistocene–Holocene Niger Delta slope as an analog for ancient slope systems. In: Abstract, AAPG annual meeting 2003

  • Doust H, Omatsola E (1990) Niger delta. In: Edwards JD, Santogrossi PA (eds) Divergent/passive margin basins. AAPG Memoir 48, American Association of Petroleum Geologists, Tulsa, pp 239–248

    Google Scholar 

  • Doust H (1989) The Niger delta: hydrocarbon potential of a major tertiary delta province. In: Proceedings of KNGMG symposium “coastal lowlands, geology and geotectonics”, 1987. Kluwer, Dordrecht, pp 203–212

    Google Scholar 

  • Evamy BD, Haremboure J, Kamerling P, Knaap WA, Molloy FA, Rowlands PH (1978) Habitat of tertiary Niger Delta. AAPG Bull 62(1):1–39. https://doi.org/10.1306/C1EA47ED-16C9-11D7-8645000102C1865D

    Article  Google Scholar 

  • Ferry JN, Mulder T, Parize O, Raillard S (2005) In: Hodgson DM, Flint SS (eds) Concept of equilibrium profile in deep-water turbidite system: effects of local physiographic changes on the nature of sedimentary process and the geometries of deposits. Geological Society Special Publications, London, pp 181–193

    Google Scholar 

  • Gee MJR, Gawthorpe RL (2006) Submarine channels controlled by salt tectonics: example from 3D seismic data offshore Angola. Mar Pet Geol 23:443–458. https://doi.org/10.1016/j.marpetgeo.2006.01.002

    Article  Google Scholar 

  • Gee MJR, Gawthorpe RL, Bakke K, Friedmann SJ (2007) Seismic geomorphology and evolution of submarine channels from the Angolan continental margin. J Sediment Res 77:433–446

    Article  Google Scholar 

  • Georgiopoulou A, Cartwright J (2013) A critical test of the concept of submarine equilibrium profile. Mar Pet Geol 41:35–47. https://doi.org/10.1016/j.marpetgeo.2012.03.003

    Article  Google Scholar 

  • Hansen L, Callow T, Kane RH, Gamberi I, Rovere F, Cronin MT, Kneller B (2015) Genesis and character of thin-bedded turbidites associated with submarine channels. Mar Pet Geol 67:852–879. https://doi.org/10.1016/j.marpetgeo.2015.06.007

    Article  Google Scholar 

  • Hansen L, Janocko M, Kane I, Kneller B (2017) Submarine channel evolution, terrace development, and preservation of intra-channel thin-bedded turbidites: Mahin and Avon channels, offshore Nigeria. Mar Geol 383:146–167. https://doi.org/10.1016/j.margeo.2016.11.011

    Article  CAS  Google Scholar 

  • Heiniö P, Davies RJ (2007) Knickpoint migration in submarine channels in response to fold growth, western Niger. Mar Pet Geol 24:434–449. https://doi.org/10.1016/j.marpetgeo.2006.09.002

    Article  Google Scholar 

  • Huyghe P, Foata M, Deville E, Mascle G (2004) Channel profiles through the active thrust front of the southern Barbados prism. GSA Bull 32:429–432

    Google Scholar 

  • Jolly BA, Whittaker AC, Lonergan L (2017) Quantifying the geomorphic response of modern submarine channels to actively growing folds and thrusts, deep-water Niger Delta. Geol Soc Am Bull 129(9–10):1123–1139. https://doi.org/10.1130/B31544.1

    Article  Google Scholar 

  • Kenyon NH, Millington J (1995) Contrasting deep-sea depositional systems in the Bering Sea. In: Pickering KT, Hiscott RN, Kenyon NH, Ricci Lucchi F, Smith RDA (eds) Atlas of deep water environments: architectural style in turbidite systems. Chapman & Hall, London, pp 196–202

    Chapter  Google Scholar 

  • Kolla V, Bourges Ph, Urruty JM, Safa P (2001) Evolution of deep-water tertiary sinuous channels offshore Angola (west Africa) and implications for reservoir architecture. AAPG Bull 85:1373–1405. https://doi.org/10.1306/8626CAC3-173B-11D7-8645000102C1865D

    Article  CAS  Google Scholar 

  • Labourdette R, Bez M (2010) Element migration in turbidite systems: random or systematic depositional processes. AAPG Bull 94(3):345–368. https://doi.org/10.1306/09010909035

    Article  Google Scholar 

  • Larsen C, Harishidayat D, Omosanya KOL (2023) Geomorphologic control on the evolution of Middle-Late Miocene submarine channels in the Southern Taranaki Basin. New Zealand Mar Pet Geol 156:106447. https://doi.org/10.1016/j.marpetgeo.2023.106447

    Article  Google Scholar 

  • Li D, Gong C, Fan G, Steel RJ, Ge D, Shao D, Ding L (2023) Morphological and architectural evolution of submarine channels: an example from the world’s largest submarine fan in the Bay of Bengal. Mar Pet Geol 155:1–19. https://doi.org/10.1016/j.marpetgeo.2023.106368

    Article  Google Scholar 

  • Manshor NA, Hassan MHA (2023) Seismic geomorphological analysis of channel types: a case study from the Miocene Malay Basin. J Geophys Eng 20:159–171. https://doi.org/10.1093/jge/gxac103

    Article  Google Scholar 

  • Mayall M, O’Byrne C (2002) Reservoir prediction and development challenges in turbiditic slope channels. Offshore Technology Conference, Houston. https://doi.org/10.4043/14029-MS

    Book  Google Scholar 

  • Mayall M, Stewart I (2000) The architecture of turbidite slope channel. In: Deep-water reservoir of the world. SEPM Society for Sedimentary Geology, pp 578–586. https://doi.org/10.5724/gcs.00.15.0578

  • Mitchell WH, Whittaker C, Mayall M, Lonergan L (2021) New models for submarine channel deposits on structurally complex slopes: examples from the Niger delta system. Mar Petrol Geol 129:105040. https://doi.org/10.1016/j.marpetgeo.2021.105040

    Article  Google Scholar 

  • Mitchum Jr RM, Vail PR, Thompson III S (1977) Seismic stratigraphy and global changes of sea level, part 2: the depositional sequence as a basic unit for stratigraphic analysis. In: Payton CE (ed) Seismic stratigraphy – applications to hydrocarbon exploration. AAPG Memoir 26, American Association of Petroleum Geologists, Tulsa, pp 53–62. https://doi.org/10.1306/M26490C4

  • Morgan R (2004) Structural controls on the positioning of submarine channels on the lower slopes of the Niger Delta. In: Davies RJ, Cartwright JA, Stewart SA, Lappin M, Underhill JR (eds) 3D seismic technology: application to the exploration of sedimentary basins. Geological Society London Memoirs 29, London, pp 45–51. https://doi.org/10.1144/gsl.mem.2004.029.01.05

  • Mulder T, Syvitski JPM (1995) Turbidity currents generated at river mouths during exceptional discharges to the world oceans. J Geol 103:285–299

    Article  CAS  Google Scholar 

  • Mulder T, Ducassou E, Gillet H, Hanquiez V, Tournadour E, Combes JP, Elberli PG, Kindler P, Gonthier E, Gonesa G (2012) Canyon morphology on a modern carbonate slope of the Bahamas: evidence of regional tectonic tilting. Geology 40:771–774

    Article  Google Scholar 

  • Mutti E, Normark WR (1991) An integrated approach to the study of turbidite systems. In: Weimer P, Link MH (eds) Seismic facies and sedimentary processes of submarine fans and turbidite systems. Springer-Verlag, New York, pp 75–106

    Chapter  Google Scholar 

  • Mutti E, Ricci Lucchi F (1972) Le torbidit dell’appenino settentrionale: introduzione all’analisi di facies. Mem. Soc. Geol. Ital. 11,161–199 (English translation by Nilsen TH 1978). Int Geol Rev 20:125–166

    Article  Google Scholar 

  • Normark WR (1970) Growth patterns of deep-sea fans. Am Asso Petrol Geol Bull 54:2170–2195. https://doi.org/10.1306/5D25CC79-16C1-11D7-8645000102C1865D

    Article  Google Scholar 

  • Normark WR (1978) Fan valleys, channels and depositional lobes on modern submarine fans-characters for recognition of sandy turbidite environments. Am Asso Petrol Geol Bull 62:912–931. https://doi.org/10.1306/C1EA4F72-16C9-11D7-8645000102C1865D

    Article  Google Scholar 

  • Oluboyo AP, Gawthorpe RL, Bakke K, Hadler-Jacobsen F (2014) Salt tectonic controls on deep-water turbidite depositional systems: Miocene, southwestern Lower Congo Basin, offshore Angola. Basin Res 26:597–620

    Article  Google Scholar 

  • Pickering KT, Hiscott RN, Hein FJ (1989) Deep marine environments. Chapman and Hall, Harper-Collins, p 416

    Google Scholar 

  • Pirmez C, Beaubouef RT, Friedmann SJ, Mohrig DC (2000) Equilibrium profile and baselevel in submarine channels: examples from Late Pleistocene systems and implications for the architecture of deepwater reservoirs. In: Weimer P, Slatt RM, Coleman J, Rosen NC, Nelson H, Bouma AH, Styzen MJ, Lawrence DT (eds) Deep-water reservoirs of the world: 20th Annual GCSSEPM Foundation Bob Perkins Research Conference 2000, Houston, pp 782–805

  • Pirmez C, Imran J (2003) Reconstruction of turbidity currents in Amazon channel. Mar Pet Geol 20:823–850. https://doi.org/10.1016/j.marpetgeo.2003.03.005

    Article  Google Scholar 

  • Posamentier HW, Kolla V (2003) Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. J Sed Res 73(3):367–388

    Article  Google Scholar 

  • Posamentier HW, Erskine RD, Mitchum RMJR (1991) Submarine fan deposition in a sequence stratigraphic framework. In: Weimer P, Link MH (eds) Seismic facies and sedimentary processes of submarine fans and turbidite systems. Springer-Verlag, New York, pp 127–136

    Chapter  Google Scholar 

  • Posamentier HW, Mazarin M, Wisman PS, Plawman T (2000) Deep water depositional systems - ultra-deep Makassar Strait, Indonesia. In: Weimer P (ed) Deep-water reservoirs of the world. SEPM Society of Sedimentary Geology, pp 806–816. https://doi.org/10.5724/gcs.00.15.0806

  • Posamentier HW, Davies RJ, Cartwright JA, Wood L (2007) Seismic geomorphology – an overview. In: Davies RJ, Posamentier HW, Wood LJ, Cartwright JA (eds) Seismic geomorphology: applications to hydrocarbon exploration and production. Geological Society Special Publications 277, London, pp 1–14. https://doi.org/10.1144/gsl.sp.2007.277.01.01

  • Prather BE, Booth JR, Steffens GS, Craig PA (1998) Classification, lithologic calibration and stratigraphic succession of seismic facies from intraslope basins, deep water Gulf of Mexico, USA. AAPG Bull 82:701–728. https://doi.org/10.1306/1D9BC5D9-172D-11D7-8645000102C1865D

    Article  Google Scholar 

  • Qin Y, Alves TM, Constantine J, Gamboa D (2016) Qantitative seismic geomorphology of submarine channel systems in SE Brazil (Espirito Santo Basin): sclale comparison with other submarine channel systems. Mar Pet Geol 78:455–473. https://doi.org/10.1016/j.marpetgeo.2016.09.024

    Article  CAS  Google Scholar 

  • Qin Y, Alves TM, Constantine J, Gamboa D (2017) The role of mass wasting in the progressive development of submarine channels (Espirito Santo Basin, SE Brazil). J Sediment Res 87:500–516

    Article  CAS  Google Scholar 

  • Short KC, Stauble AJ (1967) Outline of geology of Niger delta. Am Asso Petrol Geol Bull 51:761–799. https://doi.org/10.1306/5D25C0CF-16C1-11D7-8645000102C1865D

    Article  Google Scholar 

  • Sømme TO, Huwe SI, Martinsen OJ, Skogseid J, Valore LA (2023) Stratigraphic expression of the Paleocene-Eocene thermal maximum climate event during long-lived transient uplift – an example from a shallow to deep-marine clastic system in the Norwegian Sea. Front Earth Sci 11:1082203. https://doi.org/10.3389/feart.2023.1082203

    Article  Google Scholar 

  • Taner MT, Schuelke JS, O’Doherty R, Baysal E (1994) Seismic attributes revisited. SEG Tech Progr Expand Abstr Doi 10(1190/1):1822709

    Google Scholar 

  • Twichell DC, Schwab WC, Nelson CH, Kenyon NH, Lee HJ (1992) Characteristics of a sandy depositional lobe on the outer Mississippi fan from SeaMARC 1A side-scan sonar images. Geology 20:689–692

    Article  Google Scholar 

  • Walker RG (1978) Deep-water sandstone facies and ancient submarine fans: models for exploration and stratigraphic traps. Am Asso Petrol Geol Bull 62:932–966. https://doi.org/10.1306/C1EA4F77-16C9-11D7-8645000102C1865D

    Article  Google Scholar 

  • Weimer P (1991) Seismic facies, characteristics and variations in channel evolution, Mississippi Fan (Plio–Pleistocene), Gulf of Mexico. In: Weimer P, Link MH (eds) Seismic facies and sedimentary processes of submarine fans and turbidite systems. Springer-Verlag, New York, pp 323–347

    Chapter  Google Scholar 

  • Wu S, Bally AW (2000) Slope tectonics-comparisons and contrasts of structural styles of salt and shale tectonics of the northern Gulf of Mexico with shale tectonics of offshore Nigeria. In: Mohriak W, Talwani M (eds) Atlantic rifts. American Geophysical Union, pp 151–172

    Google Scholar 

  • Zhang J, Wu S, Hu G, Fan T, Yu B, Lin P, Jiang S (2018) Sea-level control on the submarine fan architecture in a deep-water sequence of the Niger Delta Basin. Mar Pet Geol 94:179–197. https://doi.org/10.1016/j.marpetgeo.2018.04.002

    Article  CAS  Google Scholar 

  • Zhang J, Wu S, Hu G, Yue D, Chen C, Chen M, Yu J, Xiong Q, Wang L (2023) Sedimentary-tectonic interaction on the growth sequence architecture within the intraslope basin of deep-water Niger Delta Basin. J Palaeogeogr 12(1):107–128. https://doi.org/10.1016/j.jop.2022.11.001

    Article  Google Scholar 

  • Zhao X, Qi K, Patacci M, Chengpeng T, Xie T (2019) Submarine channel network evolution above an extensive mass-transport complex: a 3D seismic case study from the Niger delta continental slope. Mar Pet Geol 104:231–248. https://doi.org/10.1016/j.marpetgeo.2019.03.029

    Article  Google Scholar 

  • Zucker E, Gvirtzman Z, Steinberg J, Enzel Y (2017) Diversion and morphology of submarine channels in response to regional slopes and localized salt tectonics, Levant basin. Mar Petrol Geol 81:98–111. https://doi.org/10.1016/j.marpetgeo.2017.01.002

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank TEPNG (TotalEnergies EP Nigeria Limited) for the provision of the seismic data and the integrated geoscience software used in this research and for the permission to publish this paper. Sunday Amoyedo, Oluremi Omogboyega, Okiemute Enaughe, and other anonymous reviewers are thanked for their thoughtful reviews of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mumini Olarewaju Busari.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Santanu Banerjee

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busari, M.O., Adekeye, O.A. Impacts of structuration on slope channel geomorphology and internal architecture: a Pleistocene feeder channel-ponded lobe system, offshore Niger Delta. Arab J Geosci 17, 176 (2024). https://doi.org/10.1007/s12517-024-11981-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-024-11981-w

Keywords

Navigation