Skip to main content
Log in

Origin and morphodynamic characterization of river sands, southwestern coast Cameroon: evidence from grain size, heavy minerals, and ilmenite chemistry

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

For the purpose of characterizing the chemical composition indices of ilmenites from the fluvial system in southwestern Cameroon, electron probe microanalysis of mineral chemistry was carried out on ilmenite grains selected from the collected sediment samples. Previously, various particle size parameters (mean size, standard deviation, kurtosis, and skewness) were applied to the sand fraction to describe textural characteristics and heavy minerals. The study reveals sands with a coarse to medium size trend, with a predominance of coarse, poorly to moderately sorted. These traits point to a high-energy setting. The 0.125–0.063 mm grain size fractions of the sands were used for the recovery of heavy minerals. The occurrence of unstable heavy minerals, such as hornblende, zoisite, garnet, and augite, in these sands denote immature sediments. According to a quantitative evaluation, the main accompanying opaque heavy minerals that may contain ilmenite are zircon and zoisite. The major and minor element compositions of ilmenite, TiO2 (43.75–56.98%; average 48.41%) and FeO (34.31–48.86% (average 43.89%), with MnO (3.06%), V2O5 (2.15%), and Nb2O5 (0.29%) including, indicate composite igneous rock. The Ti/(Ti + Fe) ratio values (0.42 to 0.52) of the samples are characteristic of ferri-ilmenites and hydrated ilmenites which have favorable to the sulfate process for the manufacture of ferrotitanium pigment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abioui M, Abia EH, Benssaou M, EKoa Bessa AZ, Abdelrahman K (2023) Iron-titanium sands of the Atlantic beaches between Tan-Tan and Tarfaya (southwest Morocco): Characterisation and origin. Proc Geol Assoc. https://doi.org/10.1016/j.pgeola.2023.04.003

  • Amaral EJ (1977) Deposition environments of the St. Peter sandstone by textural analysis. J Sediment Petrol 47:32–52

    Google Scholar 

  • Angusamy A, Rajamanickam V (2006) Depositional environment of sediments along the southern coast of Tamil Nadu. India Oceanologia 48(1):87–102

    Google Scholar 

  • Asadi H, Ghadiri H, Rose CW, Yu B, Hussein J (2007) An investigation of flow-driven soil erosion processes at low stream powers. J Hydrol 342(1–2):134–142

    Article  Google Scholar 

  • Attal M, Lavé J (2009) Pebble abrasion during fluvial transport: Experimental results and implications for the evolution of the sediment load along rivers. J Geophys Res p 114 Issue F04023. https://doi.org/10.1029/2009JF001328

  • Basu A, Molinaroli E (1989) Provenance characteristics of detrital opaque Fe-Ti oxide minerals. J Sediment Petrol 59(6):922–934

    CAS  Google Scholar 

  • Belinga BC, Ekomane E, Bineli BT, Ngo Bandong PMC, Ashukem EN, Bokanda EE, Igom MF, Tonye MD, Onana EL, Bissé SB (2022) Trace element geochemistry and U-Pb ages of alluvial rutiles from a neoproterozoic coastal area, southwestern Cameroon: implication for source rocks. J Afr Earth Sc 185:1–8

    Google Scholar 

  • Berthois L (1975) Etude sédimentologique des roches meubles (techniques et méthodes), Dion éditeur, Paris, p 277

  • Bineli Betsi T, Ngo Bidjeck Bondje LM, Mvondo H, Yannick Mama Nga LN, Molotouala CA, McFarlane C (2020) Rutile LA–ICP–MS U-Pb geochronology and implications for tectonometamorphic evolution in the Yaounde Group of the Neoproterozoic Central African Orogeny. J Afr Earth Sc 171:103939

    Article  Google Scholar 

  • Cadican RA (1961) Geologic interpretation of grain-size distribution measurement of Colorado plateau sedimentary rocks. J Geol 69:121–144

    Article  Google Scholar 

  • Cailleux A (1943) Distinction des sables marins et fluviatiles. Bulletin de la Société Géologique de France, S5-XIII (4-6), pp 125–138

  • Chernet T (1999) Effect of mineralogy and texture in the TiO2 pigment production process of the Tellnes ilmenite concentrate: Mineralogy and Petrology 67:21–32.

  • Deer WA, Howie RA, Zussman J (1992) An introduction to rock-forming minerals. Longman Sci Techn 696

  • Dill HG, Melcher F, Füßl M, Weber B (2007) The origin of rutile–ilmenite aggregates (“nigrine”) in alluvial–fluvial placers of the Hagendorf pegmatite province, NE Bavaria, Germany. Mineral Petrol 89:133–158

  • Duane DB (1964) Significance of skewness in recent sediments, western Pamlico Sound, North Carolina. J Sediment Petrol 27:3–26

    Google Scholar 

  • Elsner H (2010) Heavy minerals of economic importance. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Assess Man p 218

  • Fabris A (2002) Northwestern Murray Basin-stratigraphy, sedimentology and geomorphology. MESA J 27:20–24

    Google Scholar 

  • Folk RL, Ward WC (1957) Brazos rivers bar: a study in the significance of grain size parameters. J Sediment Petrol 27(1):325–354

    Article  Google Scholar 

  • Fournier J, Bonnot-Courtois C, Paris R, Voldoire O, Le Vot M (2012) Granulometric analyzes, principles and methods. CNRS, Dinard, p 99

    Google Scholar 

  • Friedman GM (1967) Dynamic processes and statistical parameters compared for size frequency distribution of beach and river sands. J Sediment Petrol 37(2):327–354

    Google Scholar 

  • Friedman GM, Sanders JE (1978) Principles of sedimentology. Wiley, New York, p 792

    Google Scholar 

  • Frost MT, Grey IE, Harrow Field IR, Mason K (1983) The dependence of alumina and silica contents on the extent of the alteration of weathered ilmenites of their provenance. Sed Geol 77:235–247

    Google Scholar 

  • Garzanti E, Andó S, Vezzoli G (2008) Settling equivalence of detrital minerals and grain-size dependence of sediment composition. Earth Planet Sci Lett 273:138–151

    Article  CAS  Google Scholar 

  • Garzanti S, Andó S, France-Lanord C, Censi P, Vignola P, Galy V, Lupker M (2011) Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga-Brahmaputra, Bangladesh). Earth Planet Sci Lett 302:107–120

    Article  CAS  Google Scholar 

  • Grey IE, Reid AF (1975) The structure of pseudorutile and its role in the natural alteration of ilmenite. Am Miner 60:898–906

    CAS  Google Scholar 

  • Grigsby JD (1992) Chemical fingerprinting in detrital ilmenite; a viable alternative in provenance research. J Sediment Res 62(2):331–337

    CAS  Google Scholar 

  • Grosz AE (1987) Nature and distribution of potential heavy-mineral resources offshore of the Atlantic coast of the United States. Mar Min 6:339–357

    CAS  Google Scholar 

  • Kanouo NS, Yongue-Fouateu R, Chen S, Njonfang E, Ma C, Ghogomu RT, Zhao J, Sbaba E (2012) Greyish-black rutile megaclasts from the Nsanaragati gem placer, SW Cameroon: geochemical features and genesis. J Geogr Geol 4(2):134–146

    Google Scholar 

  • Knudsen C, Penaye J, Mehlsen M, McLimans RK, Kalsbeek F (2013) Titanium minerals in Cameroon. Geol Surv Denmark Greenland Bull 28:73–76

    Article  Google Scholar 

  • Kouankap Nono GD, Fomekong BK, Minyem D, Tene Djoukam JF, Njoh OA (2023) Petrochemical and physical characterizations of detrital rutiles from Balikumbat area, Cameroon: implication for titanium exploration. Geol Ecol Landsc. https://doi.org/10.1080/247495508.2023.2178105

    Article  Google Scholar 

  • Lasheen TAI (2004) Chemical benefication of Rosetta ilmenite by direct reduction leaching. Hydrometallurgy 76:123–129

    Article  Google Scholar 

  • Lerouge C, Cocherie A, Toteu SF, Penaye J, Milesi JP, Tchameni R, Nsifa EN, Fanning M, Deloele E (2006) Shrimp U-Pb zircon age evidence for Paleoproterozoic sedimentation and 2.05 Ga syntectonic plutonism in the Nyong Group, South-Western Cameroon: consequences for the Eburnean-Transamazonian belt of NE Brazil and Central Africa. J Afr Earth Sc 44:413–427

    Article  Google Scholar 

  • Ma L, Abuduwaili J, Liu W (2020) Environmentally sensitive grain-size component records and its response to climatic and anthropogenic influences in Bosten Lake region, China. Sci Rep 10:932–942

    Google Scholar 

  • Mange AM, Maurer WFH (1992) Heavy minerals in color. Chapman and Hall, First Edition, p 147

  • Mange MA, Wright DT (2007) Heavy minerals in use. Dev Sedimentol 58:1283

    Google Scholar 

  • Mehdilo A, Irannajad M, Rezai B (2015) Chemical and mineralogical composition of ilmenite: effects on physical and surface properties. Miner Eng 70:64–76

    Article  CAS  Google Scholar 

  • Meng Q, Zhang W, Zhang Ji, Zhang Z, Wu T (2016) Heavy mineral analysis to identify sediment provenance in the Dan River drainage, China. Geosci J. https://doi.org/10.1007/s12303-015-0071-9.

  • Mohammad A, Murthy PB, Rao END, Prasad H (2020) A study on textural characteristics, heavy mineral distribution and grain-microtextures of recent sediment in the coastal area between the Sarada and Gosthani rivers, east coast of India. Int J Sedim Res 35:484–503

    Article  Google Scholar 

  • Morton AC, Hallsworth CR (1994) Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sed Geol 90:241–256

    Article  CAS  Google Scholar 

  • Morton AC, Hallsworth CR (1999) Processes controlling the composition of heavy mineral assemblages in sandstones. Sed Geol 124(1–4):3–29

    Article  CAS  Google Scholar 

  • Morton AC, Whitham AG, Fanning CM (2005) Provenance of late cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: integration of heavy mineral, mineral chemical and zircon age data. Sed Geol 182:3–28

    Article  CAS  Google Scholar 

  • Murthy DSR, Gomathy B, Bose R, Rangaswamy R (1998) A rapid method for the chemical characterization of ilmenites using ICP-AES. At Spectrosc 19(1):14–17

    CAS  Google Scholar 

  • Mvondo H, den Brok SWJ, Mvondo Ondoa J (2003) Evidence for symmetric extension and exhumation of the Yaoundé nappe (pan-African Fold belt, Cameroon). J Afr Earth Sc 36:215–231

  • Nayl AA, Awwad NS, Aly HF (2009a) Kinetics of acid leaching of ilmenite decomposed by KOH part 2. Leaching by H2SO4 and C2H2O4. J Hazard Mater 168:793–799

    Article  CAS  Google Scholar 

  • Nayl AA, Ismail IM, Aly HF (2009b) Ammonium hydroxide decomposition of ilmenite slag. Hydrometallurgy 98:196–200

    Article  CAS  Google Scholar 

  • Nédélec A, Macaudière J, Nzenti JP, Barbey P (1986) Evolution structurale et métamorphique des schistes de Mbalmayo (Cameroun). Implication pour la structure de la zone mobile d’Afrique centrale au contact du craton. Comptes Rendus Géosci 303:75–80

    Google Scholar 

  • Ngo Bidjeck Bondje LM, Bineli Betsi T, Mama Ngah LNY et al (2020) Geochemistry of rutile from the Pan-African Yaounde Metamorphic Group: implications for provenances and condition of formation. J Afr Earth Sc. https://doi.org/10.1016/j.jafrearsci.2020.103912

    Article  Google Scholar 

  • Nguyen TH, Lee MS (2018) A review on the recovery of titanium dioxide from ilmenite ores by direct leaching technologies. Miner Process Extr Metall Rev 40:231–247

    Article  Google Scholar 

  • Nordstrom KF (1977) The use of grain size statistics to distinguish between high- and moderate-energy beach environments. J Sediment Petrol 47(3):1287–1294

    Google Scholar 

  • Nsifa NE, Tchameni R, Nedelec A, Siqueira R, Pouclet A, Bascou J (2013) Structure significance and petrology of Pan-African nepheline syenites from the South West Cameroon: implication for their emplacement mode, petrogenesis and geodynamic significance. J Afr Earth Sc 87:44–58

    Article  Google Scholar 

  • Ntep Gwet P, Dupuy JJ, Matip O, Fombutu FA, Kalngui E (2001) Ressources minérales du Cameroun. Notice de la carte thématique des ressources minérales du Cameroun sur fond géologique. Sopecam, Yaoundé, p 375

  • Nyobe JM, Sababa E, Bayiga EC, Ndjigui P-D (2018) Mineralogical and geochemical features of alluvial sediments from the Lobo watershed (Southern Cameroon): implications for rutile exploration. Comptes Rendus Géosci. https://doi.org/10.1016/j.crte.2017.08.003

  • Nzenti JP, Barbey P, Macaudière J, Soba D (1988) Origin and evolution of the late Precambrian high-grade Yaounde gneisses (Cameroon). Precambr Res 38:91–109

    Article  CAS  Google Scholar 

  • Penaye J, Toteu SF, Van Schmus WR, Nzenti JP (1993) U-Pb and Sm-Nd preliminary geochronologic data on the Yaoundé Group, Cameroon: reinterpretation of the granulitic rocks as the suture of a collision in the ‘‘Centrafrican belt. Comptes Rendus Geosci 317:789–794

    CAS  Google Scholar 

  • Pinot JP (1994) Manipulations sédimentologiques courantes. M.W. TURGAL.07.SEDI, p 118

  • Poon P, Graham IT, Liepa EAC, Cohen DR, Pringle IJ, Burkett DA, Privat K (2020) Mineral distribution and provenance of heavy mineral sands (zircon, ilmenite, rutile) deposits from the NW Murray Basin, far western NSW, Australia. Aust J Earth Sci. https://doi.org/10.1080/08120099.2020.1703813

  • Rahman AJ Tardio Bhargava SK, Zaman MN, Mehedi Hasan ASM, Torpy A, Pownceby MI (2020) Comparison of the chemistry and mineralogy of ilmenite concentrates sourced from fluvial (Brahmaputra River) and beach placer (Cox’s Bazar) deposits. Bangladesh Ore Geol Rev. https://doi.org/10.1016/j.oregeorev.2019.103271

  • Rao DS, Sengupta D (2014) Electron microscopic studies of ilmenite from the Chhatrapur coast, Odisha, India, and their implications in processing. J Geochem 8:1–8

    CAS  Google Scholar 

  • Rao DS, Vijayakumar TV, Prabhakar S, Bhaskar Raju G, Ghosh TK (2005) Alteration characteristics of ilmenites from South India. J Min Mater Charac Eng 4(1):47–59

    Google Scholar 

  • Rozendaal A, Philander C, Carelse C (2009) Characteristics, recovery and provenance of rutile from the Namakawa sand heavy mineral deposit, South Africa. The 7th International Heavy Mineral Conference, the South African institute of Mining and Metallurgy

  • Rubey WW (1933) The size-distribution of heavy minerals within a water-laid sandstone. J Sediment Petrol 3:3–29

    Google Scholar 

  • Sahu BK (1964) Depositional mechanisms from the size analysis of clastic sediments. J Sediment Petrol 34:73–83

    Google Scholar 

  • Saravanan S, Chandrasekar N, Joevivek V (2013) Temporal and spatial variation in the sediment volume along the beaches between Ovari and Kanyakumari (SE India). Intl J Sediment Res 28(3):384–395

    Article  Google Scholar 

  • Stanaway KJ (1994) Overview of titanium dioxide feedstocks. Min Eng 46:1367–1370

    CAS  Google Scholar 

  • Stendal H, Toteu SF, Frei R, Penaye J, Nje L, Bassahak J, Nni J, Kankeu B, Ngako V, Hell JV (2006) Derivation of detrital rutile in the Yaounde region from the Neoproterozoic Pan-African belt in southern Cameroon (Central Africa). J Africa Earth Sci 44(4–5):443–458

    Article  Google Scholar 

  • Subasinghe HCS, Ratnayake AS (2021) Processing of ilmenite into synthetic rutile using ball milling induced sulphurisation and carbothermic reduction. Miner Eng 173:107–197

    Article  Google Scholar 

  • Taylor RKA, Scanlon TJ, Moore DE, Reaveley BJ (1996) The critical importance of high-quality ilmenite for the TiO2 pigment industry. 12th Indust Min Intl Congr, 61–70

  • Tchameni R, Mezger K, Nsifa NE, Pouclet A (2000) Neoarchaean evolution in the Congo craton: evidence from K rich granitoids of the Ntem Complex, Southern Cameroon. J Afr Earth Sc 30:133–147

    Article  CAS  Google Scholar 

  • Tonje JC, Ndjigui P-D, Nyeck B, Bilong P (2014) Geochemical features of the Matomb alluvial rutile from the Neoproterozoic Pan-African belt, southern Cameroon. Chem Erde 74:557–570

    Article  CAS  Google Scholar 

  • Toteu SF, Van Schmus WR, Penaye J, Nyobe JB (1994) U-Pb and Sm–Nd evidence for Eburnean and Pan-African high-grade metamorphism in cratonic rocks of southern Cameroon. Precambr Res 67:321–347

    Article  Google Scholar 

  • Tricart J (1965) Principles and methods of geomorphology. Masson and Cie, Paris, p 496

    Google Scholar 

  • United States Geological Survey (USGS) (2021) Titanium and titanium dioxydes. Annuel publication 174–175

  • Wentworth KC (1922) A scale of grade and class terms for clastic sediments. J Geol 30:377–392

    Article  Google Scholar 

  • White AF, Peterson ML, Hochella MF (1994) Electrochemistry and dissolution kinetics of magnetite and ilmenite. Geochim Cosmochim Acta 58(8):1859–1875

    Article  CAS  Google Scholar 

  • Williams VA (1990) WIM 150 detrital heavy mineral deposit. In: Hughes FE (ed) Geology of the Mineral Deposits of Australia and Papua New Guinea, Monograph 14. Aust Instit Min Metallurg 1609–1614

  • Zhang Y, Qi T, Zhang Y (2009) A novel preparation of titanium dioxide from titanium slag. Hydrometallurgy 96:52–56

    Article  CAS  Google Scholar 

  • Zhu Z, Zhang W, Cheng CY (2011) A literature review of titanium solvent extraction in chloride media. Hydrometallurgy 105:304–313

    Article  CAS  Google Scholar 

Download references

Acknowledgements

BINELI BETSI Thierry is acknowledged by authors for the EPMA analyses at Department of Mining and Geological Engineering, Botswana University of Science and Technology. Acknowledgement to Enock Embom Christophe for his support in the production of Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belinga Belinga Cédric.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Attila Ciner

Highlights

• The river sands show coarse grain transported by traction and saltation and indicate high-energy deposition.

• The ferri-ilmenites and hydrated ilmenites from composite rocks denote the low alteration effect.

• The V2O5, Nb2O5, and MnO are the main impurities substituting TiO2 in the structure of the ilmenites studied.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cédric, B.B., Bertrant, B.S., Adama, A. et al. Origin and morphodynamic characterization of river sands, southwestern coast Cameroon: evidence from grain size, heavy minerals, and ilmenite chemistry. Arab J Geosci 17, 115 (2024). https://doi.org/10.1007/s12517-024-11919-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-024-11919-2

Keywords

Navigation