Skip to main content
Log in

Diagenesis, paleoenvironments, and petroleum geology of sediments lining the West and Central African Rift System, Koum Basin, North Cameroon

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The West and Central African Rift System (WCARS) hosts all the sedimentary basins of West and Central Africa, and constitutes a priority target for sedimentological studies in the area. Numerous basins in this area, notably the Koum Basin, remain poorly known greenfields, owing to a dearth of studies associated with poor accessibility, security limitations, and accrued exploration focus on hydrocarbon-producing oceanic basins in the area. The present study seeks to reduce the knowledge gap by providing new data on the diagenesis, petroleum system, and paleoenvironments of the Koum Basin. NNW–SSE traverse mapping across the basin aided in the identification of conglomerates, sandstones, and shales/mudstones, hosting dinosaur tracks, plant matter and are intercalated by siltstones and bivalve-rich carbonates. Lithofacies analyses, petrography, scanning electron microscopy, and X-ray diffractometry were applied. The studied facies form three facies associations reflecting fluvio-lacustrine paleoenvironments. Petrography exposed concavo-convex to sutured mineral margins, presenting silicate overgrowths plus calcite, silica, hematite, and clay cements. Albite, quartz, calcite, and microcline dominate bulk mineralogy, with analcime, goethite, and hematite as minors, while chlorite-smectite, illite, and smectite dominate clay mineralogy, all pointing to the pre-eminence of mesodiagenesis within the Koum Basin. Studied shales and siltstones present traces of oil/oil migration paths in organic pores, whereas sandstones and carbonates are devoid of mature organic matter and interconnected porosity. Consequently, a source-rock petroleum system with shales and siltstones playing the dual roles of hydrocarbon source and reservoir is inferred for this basin that can be considered a potential unconventional hydrocarbon reserve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Aagaard P, Egeberg PK, Saigal GC, Morad S, Bjorlykke K (1990) Diagenetic albitization of detrital K-feldspars in Jurassic, Lower Cretaceous and Tertiary clastic reservoir rocks from offshore Norway; II, Formation water chemistry and kinetic considerations. J Sediment Res 60:575–581. https://doi.org/10.1306/212F91EC-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  • Abdel-Wahab A, Salem AMK, McBride EF (1998) Quartz cement of meteoric origin in silcrete and nonsilcrete sandstones, Lower Carboniferous, western Sinai, Egypt. J Afr Earth Sci 27:277–290. https://doi.org/10.1016/S0899-5362(98)00061-X

    Article  Google Scholar 

  • Abubakar MB (2014) Petroleum potentials of the Nigerian Benue Trough and Anambra Basin: a regional synthesis. Nat Res Forum 5:25–58. https://doi.org/10.4236/nr.2014.51005

    Article  Google Scholar 

  • Adatte T, Stinnesbeck W, Keller G (1996) Lithostratigraphic and mineralogic correlations of near K/T boundary clastic sediments in Northeastern Mexico: implications for origin and nature of deposition. Geol Soc Amp Spec Pap 307:211–226

    Google Scholar 

  • Agbor-Taku J, Njoh OA, Fon NN, Mbafor PU, Bessong M (2023a) A new lithostratigraphic profile for Cretaceous to Paleogene successions in the West and Central African Rift System, Koum Basin, Northern Cameroon. Stratigraphy, Micropress 20:2

    Google Scholar 

  • Agbor-Taku J, Njoh OA, Bessong M, Mbafor PU, Fon NN (2023b) Sedimentology, T-R sequence stratigraphy and geochemical characterization of sedimentary successions lining the West and Central African Rift System: case of the Koum Basin. Stratigraphy, Micropress 20:2

  • Ataman G, Beseme P (1972) Decouverte de l’Analcime sedimentaire en Anatolie du nord-ouest (Turquie): mineralogie, genese, parageneses. Chem Geol 9:203–225

    Article  Google Scholar 

  • Ataman G, Gündoǧdu N (1982) Analcimic zones in the tertiary of Anatolia and their geological positions. 31(1):89–99. https://doi.org/10.1016/0037-0738(82)90009-4

  • Ballance PF, Nelson CS (1969) Differential cementation in the Waikawau Limestone (Waitemata Group), West Auckland. NZ Journal of Geology and Geophysics 12:67–86

    Article  Google Scholar 

  • Bessoles B, Trompette M (1980) Géologie de l’Afrique: La chaîne Panafricaine, “Zone mobile d’Afrique centrale (partie sud) et Zone mobile soudanaise.” Mémoire du BRGM 92:19–80

    Google Scholar 

  • Bessong M, Bomolomo MV, Mbesse CO et al (2022) The Garoua Formation of the Upper Benue Trough (Cameroon), as a potential lateral extension of the Bima Formation (Nigeria): evidence from geomorphology, facies analysis, petrology and geochemistry. Arab J Geosci 15:915. https://doi.org/10.1007/s12517-022-10078-6

    Article  Google Scholar 

  • Bessong M, Hell JV, Samankassou E, Burkhardt SF, Eyong JT, Ngos S, Nolla JD, Mbesse CO, Adatte T, Mfoumbeng MP, Dissombo EAN, Ntsama AJ, Mouloud B, Ndjeng E (2018) Hydrocarbon potential, palynology and palynofacies of four sedimentary basins in the Benue Trough, Northern Cameroon. J Afr Earth Sci:13973–13995

  • Bjorlykke K (1998) Clay mineral diagenesis in sedimentary basins — a key to the prediction of rock properties. Examples from the North Sea Basin. Clay Miner 33(1):15–34

    Article  Google Scholar 

  • Bjorlykke K, Aagaard P, Egeberg PK, Simmons SP (1995) Geochemical constraints from formation water analyses from the North Sea and the Gulf Coast basins on quartz, feldspar and illite precipitation in reservoir rocks. In: Cubitt JM, England WA (eds) The Geochemistry of Reservoirs, vol 86. London, GSL Special Publication, pp 33–50. https://doi.org/10.1144/GSLSP19950860103

    Chapter  Google Scholar 

  • Bjorlykke K, Egeberg PK (1993) Quartz cementation in sedimentary basins. AAPG Bulletin, v 77:1538–1548

    Google Scholar 

  • Bjorlykke K, Jahren J (2010) Sandstones and sandstone. In: Bjorlykke K (ed) Petroleum Geoscience from Sedimentary Environments to Rock Physics. © Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-02332-3_4

    Chapter  Google Scholar 

  • Bjorlykke K, Jahren J, Mondol NH et al (2009) Sediment compaction and rock properties. Search and Discovery Article #50192

    Google Scholar 

  • Bjorlykke K, Nedkvitne T, Ramn M, Saigal GC (1992) Diagenetic processes in the Brent Group (Middle Jurassic) reservoirs of the North Sea: an overview. Geol Soc Lond 61:263–287

    Article  Google Scholar 

  • Boggs S Jr (2006) Principles of sedimentology and stratigraphy, 4th edn. Pearson Education Inc., p 662

    Google Scholar 

  • Boles JR (1984) Secondary porosity reactions in the Stevens Sandstone, San Joaquin Valley, California. Part 2: aspects of porosity modification. AAPG special volumes 37:217–224

    Google Scholar 

  • Bouyo Houketchang M, Penaye J, Njel UO, Moussango IAP, Sep NJP, Nyama AB, Wassouo WJ, Abaté EJM, Yaya F, Mahamat A, Ye H, Wu F (2016) Geochronological, geochemical and mineralogical constraints of emplacement depth of TTG suite from the Sinassi Batholith in the Central African Fold Belt (CAFB) of northern Cameroon: implications for tectonomagmatic evolution. J Afr Earth Sci:1169–1141. https://doi.org/10.1016/jjafrearsci201512005

  • Bowen BB, Benison KC, Oboh-Ikuenobe FE, Story S, Mormile MR (2008) Active hematite concretion formation in modern acid saline lake sediments, Lake Brown, Western Australia. Earth Planet Sci Lett 268:52–63

    Article  Google Scholar 

  • Bozau E, Sattler CD, van Berk W (2015) Hydrogeochemical classification of deep formation waters. Appl Geochem 52:23–30

    Article  Google Scholar 

  • Brand U, Morrison JO, Campbell IT (1998) Diagenesis. In: Geochemistry Encyclopedia of Earth Science. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4496-8_76

    Chapter  Google Scholar 

  • Carrigy MA, Mellon GB (1964) Authigenic clay mineral cements in Cretaceous and Tertiary sandstones of Alberta. J Sediment Res 34(3):461–472. https://doi.org/10.1306/74D710BE-2B21-11D7-8648000102C1865D

    Article  Google Scholar 

  • Castaing C, Feybesse JL, Thieblemont D, Triboulet C, Chevremont P (1994) Palaeogeographical reconstructions of the Pan-African/Brasiliano orogen closure of an oceanic domain or intracontinental convergence between major blocks? Precambrian Res 69:327–344

    Article  Google Scholar 

  • Caxito FA, LCMdL S, Ganade CE et al (2020) Toward an integrated model of geological evolution for NE Brazil–NW Africa: the Borborema Province and its connections to the Trans-Saharan (Benino-Nigerian and Tuareg shields) and Central African orogens. Brazilian Journal of Geology 50(2):32. https://doi.org/10.1590/2317-4889202020190122

    Article  Google Scholar 

  • Congleton JD (1990) Vertebrate paleontology of the Koum Basin, northern Cameroon, and archosauian paleobiogeography in the early Cretaceous. Master thesis, Southern Methodist University, p 258

  • Congleton JD, Flynn L, Jacobs L, Brunet M, Dejax J, Hell JV, Pilbeam D (1992) Preliminary correlation of continental sediments of the Koum Basin, Northern Cameroon Aspects of nonmarine Cretaceous geology. China Ocean Press, pp 213–219

    Google Scholar 

  • David G, Cousin A, Forni O, Meslin PY, Dehouck E, Mangold N, L’Haridon J, Rapin W, Gasnault O, Johnson JR, Ollila AR, Newell AR, Salvatore M, Gabriel TSJ, Wiens RC, Maurice S (2020) Analyses of high-iron sedimentary bedrock and diagenetic features observed with ChemCam at Vera Rubin Ridge, Gale Crater, Mars: Calibration and characterization. J Geophys Res Planets 125:e2019JE006314. https://doi.org/10.1029/2019JE006314

    Article  Google Scholar 

  • Deer A, Howie R, Wise WS, Zussman J (2004) Rock-forming minerals vol. 4B: framework silicates - silica minerals, feldspathoids and zeolites. The Geological Society, London

    Google Scholar 

  • Dusterhoft R, Williams K, Kumar A, Matt C (2013) Understanding complex source rock petroleum systems to achieve success in shale developments. Paper presented at the SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, March 2013. https://doi.org/10.2118/164271-MS

  • Emery D, Myers RJ, Young R (1990) Ancient subaerial exposure and freshwater leaching in sandstones. Geology 18:382–406. https://doi.org/10.1130/0091-7613(1990)01823CO;2

    Article  Google Scholar 

  • Füchtbauer H (1974) Sediments and sedimentary rocks 1. Schweizerbart publishers, ISBN 978-3-510-65007-1, p 464

    Google Scholar 

  • Gao H, Zhou X, Wen Z, Guo W, Tian W, Li S, Fan Y, Luo Y (2022) Classification and evaluation of shale oil reservoirs of the Chang 71-2 Sub-Member in the Longdong Area. Energies 15:5364. https://doi.org/10.3390/en15155364

    Article  Google Scholar 

  • Genik GJ (1993) Petroleum geology of Cretaceous-Tertiary rift basins in Niger, Chad, and Central African Republic. AAPG Bull (1993) 77(8):1405–1434. https://doi.org/10.1306/BDFF8EAC-1718-11D7-8645000102C1865D

    Article  Google Scholar 

  • Giles MR (1997) Diagenesis: a quantitative perspective: implications for basin modelling and rock property prediction. Dordrecht Kluwer Academic Boston, Kluwer Academic Publishers, 526p

    Google Scholar 

  • Helal GYY (2017) Source, Reservoir and Cap Rocks. Open Online Published Essay. Source Reservoir and Cap Rocks | PDF | Sedimentary Rock | Petroleum Reservoir (scribd.com)

  • Hirt WG, Wenk HR, Boles JR (1993) Albitization of plagioclase crystals in the Stevens sandstone (Miocene), San Joaquin Basin, California, and the Frio Formation (Oligocene), Gulf Coast, Texas: a TEM/AEM study. GSA Bulletin 105:708–714. https://doi.org/10.1130/0016-7606(1993)10523CO;2

    Article  Google Scholar 

  • Houseknecht DW (1984) Influence of grain size and temperature on intergranular pressure solution, quartz cementation, and porosity in a quartzose sandstone. J Sediment Res 54(2):348–361. https://doi.org/10.1306/212F8418-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  • Hurowitz JA, Grotzinger JP, Fischer WW, McLennan SM, Milliken RE, Stein N et al (2017) Redox stratification of an ancient lake in Gale crater, Mars. Science 356(6341). https://doi.org/10.1126/scienceaah6849

  • Jiang Z, Zhang W, Liang C, Wang Y, Liu H, Chen X (2016) Basic characteristics and evaluation of shale oil reservoirs. Petroleum Research 2:149–163. https://doi.org/10.1016/S2096-2495(17)30039-X

    Article  Google Scholar 

  • Kloprogge JT, Komarneni S, Amonette JE (1999) Synthesis of smectite clay minerals: a critical review. Clay Clay Miner 47(5):529–554

    Article  Google Scholar 

  • Kubler B (1987) Cristallinité de I’illite-méthode normalisées de préparation, méthode normalisée de mesure, méthode automatique normalisée de mesure. Cahiers de l’institut de Géologie, université de Neuchâtel, p 10

    Google Scholar 

  • Kuchinskiy V (2013) Organic porosity study: porosity development within organic matter of the Lower Silurian and Ordovician source rocks of the Poland Shale Gas Trend. Search and Discovery Article #10522

    Google Scholar 

  • Lander RH, Bonnell LM (2010) A model for fibrous illite nucleation and growth in sandstones. AAPG Bull 94(8):1161–1187. https://doi.org/10.1306/04211009121

    Article  Google Scholar 

  • Lirong D, Kunye X et al (2022) Exploration discovery and hydrocarbon accumulation characteristics of Doseo strike-slip and inverted basin, Chad. Pet Explor Dev 49(2):247–256

    Article  Google Scholar 

  • Liu R, Hao F, Engelder T, Zhu Z, Yi J, Xu S et al (2020a) Influence of tectonic exhumation on porosity of Wufeng-Longmaxi shale in the Fuling gas field of the eastern Sichuan Basin, China. Bulletin 104:939–959. https://doi.org/10.1306/08161918071

    Article  Google Scholar 

  • Liu R, Zheng J, Hao F, Nie Z, Heng D, Tan X et al (2020b) Variation in pore systems with tectonic stress in the overthrust Wufeng-Longmaxi shale of the southern Sichuan Basin. China J Nat Gas Sci Eng 83:103617. https://doi.org/10.1016/j.jngse.2020.103617

    Article  Google Scholar 

  • Loucks RG, Reed RM, Ruppel SC, Jarvie DM (2009) Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale. J Sediment Res 79(12):848–861. https://doi.org/10.2110/jsr.2009.092

    Article  Google Scholar 

  • Lucia FJ, Major RP (1994) Porosity evolution through hypersaline reflux dolomitization. In: Purser, B H, Tucker, M E, and Zenger, D H, eds, Dolomites, a volume in honour of Dolomieu. Int Assoc Sediment 21:325–341

    Google Scholar 

  • Luo C, Lin H, Peng Y, Qu H, Huang X, Yin N, Liu W, Gao X (2021) Factors controlling shale reservoirs and development potential evaluation: a case study. Geofluids 2021:13. https://doi.org/10.1155/2021/6661119

    Article  Google Scholar 

  • MacEwan DMC, Amíl R (1975) Interstratified clay minerals. In: Gieseking JE (ed) Soil components vol 2: inorganic components. Springer Berlin/Heidelberg, Germany, pp 265–334

    Chapter  Google Scholar 

  • Makeen MY, Shan X et al (2021) Reservoir quality and its controlling diagenetic factors in the Bentiu Formation, Northeastern Muglad Basin. Sudan Sci Rep 11:26. https://doi.org/10.1038/s41598-021-97994-x

    Article  Google Scholar 

  • Makos M, Drozd RJ, Noor I, Kołodziejczyk Z, Górniak M, Wahab IU, Akhtar MJ, Muhammad SL (2023) Source rock quality and continuous petroleum system in the Ranikot Formation (Kirthar Foldbelt, Pakistan) based on principal organic geochemistry. In: El Atfy H, Ghassal BI (eds) Advances in petroleum source rock characterizations: integrated methods and case studies. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-031-16396-8_13

    Chapter  Google Scholar 

  • McBride EF, Folk RL, Yancey TE (2012) Silica-cemented sandstones (groundwater silcretes) in outcrops of the Jackson Group, Texas Coastal Plain Gulf Coast. Assoc Geol Soc Transact 62:273–285

    Google Scholar 

  • McCormack J, Kwiecien O (2021) Coeval primary and diagenetic carbonates in lacustrine sediments challenge paleoclimate interpretations. Sci Rep 11:7935. https://doi.org/10.1038/s41598-021-86872-1

    Article  Google Scholar 

  • Miall AD (1977) Lithofacies types and vertical profile models in braided river deposits: a summary. Geological Survey of Canada, Calgary, Alberta, Canada, pp 597–604

    Google Scholar 

  • Miall AD (2000) Principles of sedimentary basin analysis, 3rd and enlarged edn. Springer-Verlag, Berlin, p 616

    Book  Google Scholar 

  • Milliken KL (1989) Petrography and composition of authigenic feldspars, Oligocene Frio Formation, South Texas. J Sediment Res 59:361–374. https://doi.org/10.1306/212F8F94-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  • Mimba ME, Ohba T, Nguemhe FSC (2018) Regional geochemical baseline concentration of potentially toxic trace metals in the mineralized Lom Basin, East Cameroon: a tool for contamination assessment. Geochem Trans 19(1). https://doi.org/10.1186/s12932-018-0056-5

  • Min G, Hou G (2019) Mechanism of Mesozoic Africa rift system: Paleostress field modelling. J Geodyn 132. https://doi.org/10.1016/j.jog.2019.101655

  • Morad S (1990) Mica alteration reactions in Jurassic reservoir sandstones from the Haltenbanken area, offshore Norway. Clays Clay Miner 38:584–590. https://doi.org/10.1346/CCMN19900380603

    Article  Google Scholar 

  • Morgan JP, Treadwell RC (1954) Cemented sandstone slabs of the Chandeleur Islands, Louisiana. J Sediment Res 24(2):71–75. https://doi.org/10.1306/D426965C-2B26-11D7-8648000102C1865D

    Article  Google Scholar 

  • Neumann VH, Rocha DEGA, Vortisch W et al (2013) Sedimentary facies and palaeoenvironmental records of an intracratonic basin lake: Aptian Lacustrine Crato Formation, Jatobá Basin, NE Brazil. Search and Discovery Article #50882

    Google Scholar 

  • Nichols G (2009) Sedimentology and stratigraphy. Blackwell Science Ltd, London, p 335

    Google Scholar 

  • Njamnsi NY, Anoh NO, Lemewihbwen NG, Ndengwe A, Suh CE, Tamfu S (2022a) Optical and geochemical assessment of petroleum source rock potential and palaeodepositional environments of Cretaceous mudstones, Koum Basin, North Cameroon. J Afr Earth Sci 196:104674. https://doi.org/10.1016/j.jafrearsci.2022.104674

    Article  Google Scholar 

  • Njamnsi NY, Anoh NO, Lemewihbwen NG, Suh CE, Tamfu S (2022b) Molecular organic geochemistry of mudstones from Koum Basin, Cameroon: paleoenvironmental, age, maturity and genetic implication. J Géosci Géomat 101:45–64. https://doi.org/10.12691/Jgg-10-1-4

    Article  Google Scholar 

  • Njel UO (1987) Une série volcanique à albitophyres (Poli, Cameroun) Un exemple de volcanisme préorogénique non ophiolitique, ensialique, mais différent du modèle hercyno-type. CR Acad Sc Paris, t304, Série II, n° 10:515–520

    Google Scholar 

  • Njoh OA, Taku AJ (2016) Shallow marine Cretaceous sequences and petroleum geology of the Onshore Portion Rio Del Rey Basin, Cameroon, Gulf of Guinea. Open J Mar Sci 6:177–192. https://doi.org/10.4236/ojms.2016.62014

    Article  Google Scholar 

  • Nolla JD, Hell JV, Ngos S, Bessong M et al (2015) Lithostratigraphy of the Koum Basin (Northern Cameroon). Int J Multidiscip Res Dev 2(6):103–114

    Google Scholar 

  • Nzenti JP, Barbey P, Macaudière J, Soba D (1988) Origin and evolution of the Late Precambrian high-grade Yaoundé gneisses (Cameroon). Precambrian Res 38(2):91–109. https://doi.org/10.1016/0301-9268(88)90086-1

    Article  Google Scholar 

  • Odom IE (1984) Smectite clay minerals: properties and uses. Philos Trans R Soc Lond A311:391–409

    Google Scholar 

  • Penaye J, Kroner A, Toteu S, Schmus VW, Doumnang JC (2006) Evolution of the Mayo Kebi region as revealed by zircon dating an early (ca 740 Ma) Pan-African magmatic arc in Southern Chad. J Afr Earth Sci 44:530–542

    Article  Google Scholar 

  • Pettijohn FJ, Potter PE, Siever R (1972) Sand and sandstone. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Poidevin JL (1983) La tectonique pan-africaine à la bordure nord du Craton Congolais l’orogenèse des Oubanguides in 12th colloque on the African Geology. Musée Royal de l’Afrique Centrale, Tervuren, Belgium Abstract, p 75

    Google Scholar 

  • Reynolds RC (1980) Interstratified clay minerals in crystal structures of clay minerals and their X-ray identification. In: Brindley GW, Brown G (eds) Monograph. Mineralogical Society London, UK, pp 249–303

    Google Scholar 

  • Sarkisyan SG (1971) Application of the scanning electron microscope in the investigation of oil and gas reservoir rocks. J Sediment Petrol 41:289–292

    Article  Google Scholar 

  • Sawhney BL (1989) Interstratification in layer silicates, chapter 16. In: Dixon JB, Weed SB (eds) Minerals in Soil Environments, vol 1, 2nd edn. https://doi.org/10.2136/sssabookser12edc16

    Chapter  Google Scholar 

  • Schnurrenberger D, Russell D, Kelts K (2003) Classification of lacustrine sediments based on sedimentary components. J Paleolimnol 29:141–154

    Article  Google Scholar 

  • Scholle PA, Ulmer-Scholle DS (2003) A colour guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis, vol 77. AAPG Memoir, Tulsa, OK, p 474

    Google Scholar 

  • Schwoerer P (1965) Notice explicative sur la feuille Garoua – Est à 1/500000

  • Selley R (2000) Applied sedimentology. Academic Press, San Diego, USA, p 523

    Google Scholar 

  • Shandini Y, Kouske PA, Nguiya S, Mouzong MP (2018) Structural setting of the Koum sedimentary basin (North Cameroon) derived from EGM2008 gravity field interpretation. Contrib Geophys Geodesy 48/4:281–298

    Article  Google Scholar 

  • Slomka T, Slomka E (2001) Sequences of the facies and depositional intervals in the Godula Beds of the Polish Outer Carpathians. Ann Soc Geol Pol 71:35–42

    Google Scholar 

  • Stadler P (1973) Influence of crystallographic habit and aggregate structure of authigenic clay minerals on sandstone permeability. Geologie en Mijnbouw, v 52:217–220

    Google Scholar 

  • Surdam RC, Crossey LJ, Hagen ES, Heasler HP (1989) Organic-inorganic interactions and sandstone diagenesis. AAPG Bull 73:1–23

    Google Scholar 

  • Torres G, Amparo L, Gomez M, Diana L, Barrios R, Margarita H, Bejarano A, Lemus J (2019) Methodology to define hydrocarbon potential in a shale reservoir based on geochemical data and well logs. CT&F - Ciencia, Tecnologia y Futuro 9(1):5–14. https://doi.org/10.29047/01225383.147

    Article  Google Scholar 

  • Toteu ST, Dumont JF, Bassahak J, Penaye J (1984) Complexe de base et série intermédiaires dans la zone mobile Pan-Africaine de la région de Poli, au Cameroun. CR Acad Sc Paris, t 299, Série II, n° 9:561–564

    Google Scholar 

  • Toteu ST, Michard A, Macaudiere J, Bertrand JML, Penaye J (1986) Comptes rendus, 303, Série II, pp 375–378

    Google Scholar 

  • Toteu ST, Penaye J, Djomani YP (2004) Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon. Rev cannadienne des sciences de la Terre, pp 73–85

    Google Scholar 

  • Tucker ME (1982) The field description of sedimentary rocks, vol 2. Open University Press, Geological Society of London handbook series, p 112 ISBN 0335100368, 9780335100361

    Google Scholar 

  • Tucker ME (1988) Techniques in sedimentology. Blackwell Scientific Publications, p 394 ISBN 0632013729 (ISBN13 9780632013722)

    Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Scientific Publications, Oxford, p 502

    Book  Google Scholar 

  • Ulmer-Scholle DS, Scholle PA, Schieber J, Raine RJ (2015) A colour guide to the petrography of sandstones, siltstones, shales and associated rocks. American Association of Petroleum Geologists. https://doi.org/10.1306/M1091304

    Book  Google Scholar 

  • Vieira MM, De Ros LF (2006) Cementation patterns and genetic implications of Holocene beach rocks from Northeastern Brazil. Sediment Geol 192:207–230

    Article  Google Scholar 

  • Vigliotti L, Capotondi L, Masayeda T (1999) Magnetic properties of sediments deposited in sub-oxic-anoxic environments: relationships with biological and geochemical proxies. Geol Soc Lond Spec Publ 151:71–83. https://doi.org/10.1144/GSLSP19991510108

    Article  Google Scholar 

  • Walderhaug O (2000) Modelling quartz cementation and porosity in Middle Jurassic Brent Group sandstones of the Kvitebjørn field, Northern North Sea. AAPG Bull 84:1325–1339. https://doi.org/10.1306/A9673E96-1738-11D7-8645000102C1865D

    Article  Google Scholar 

  • Walker RG, James NP (eds) (1992) Facies models response to sea-level change. Geological Association of Canada, p 409

    Google Scholar 

  • Williams KE, (2013) Source rock reservoirs are a unique petroleum system. Search and Discovery Article #41138. Posted June 30. Adapted from poster presentation given at AAPG 2013 Annual Convention and Exhibition, Pittsburgh, Pennsylvania, May 19-22, 2013. AAPG©2013

  • Wilson MJ (1987) Soil smectite and related interstratified minerals: recent developments. In: van Schultz LC et al (eds) Proc. Int. Clay Conf. Denver. The Clay Minerals Society, Bloomington, pp 167–173

    Google Scholar 

  • Zhao J, Cao Q, Bai Y, Er C, Li J, Wu W, Shen W (2015) Petroleum accumulation: from continuous to discontinuous. Acta Geologica Sinica (English Edition) 89:303–306

    Article  Google Scholar 

  • Zhao J, Cao Q, Bai Y, Er C, Li J, Wu W, Shen W (2017) Petroleum accumulation: from continuous to discontinuous. Petrol Res 2:131–145

    Article  Google Scholar 

  • Zhao JZ, Li J, Wu WT, Cao Q, Bai YB, Er C (2018) The petroleum system: a new classification scheme based on reservoir qualities. Pet Sci 16(2):229–251. https://doi.org/10.1007/s12182-018-0286-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the immense contribution to this research project idea made by Nolla Desire Junior (of late). We are grateful to the editor and reviewers for their detailed reviews and suggestions that have greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

JA-T and MB conceived the research idea and carried out field mapping accompanied by NNF and PM. All the authors took part in sample preparation and data analysis. MB and OAN carried out the data interpretation. JA-T wrote the manuscript, with contributions from all the other authors. PM carried out full grammatical check and figure corrections of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Junior Agbor-Taku.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Attila Ciner

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agbor-Taku, J., Fon, N.N., Mbafor, P. et al. Diagenesis, paleoenvironments, and petroleum geology of sediments lining the West and Central African Rift System, Koum Basin, North Cameroon. Arab J Geosci 16, 601 (2023). https://doi.org/10.1007/s12517-023-11710-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-023-11710-9

Keywords

Navigation