Skip to main content
Log in

Evaluation of the impact of fragile-ductile-fault-related hydrothermal alteration on geomechanical parameters in highly anisotropic mine environments—an improved linking of geology and rock mechanics

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract 

Predicting the behavior of damaged and hydrothermally altered rocks is the key to the economic success and safety of rock engineering projects, such as surface and underground excavations. This study provides information and tools to facilitate determining favorable areas for excavation on the basis of geological, geomechanical, and structural parameters near a major fragile structure that cuts across a complexly deformed gold deposit. We use a structural, geological, and hydrothermal alteration model to determine the general characteristics of the Bousquet Fault at the Westwood gold mine, northern Québec, Canada. The characterization of hydrothermal alteration through lithogeochemical and petrographic analyses improved our understanding of the impact of the Bousquet Fault on the various surrounding geological units. Risks of rockburst and rock projection increase near the Bousquet Fault because of changes in rock rheology. These modifications were induced by chemical and mineralogical changes during hydrothermal alteration, including silicification and epidotization along the fault. Silicification was distributed heterogeneously along the fault and developed preferentially in some specific units such as basaltic and andesitic rocks. Sericite alteration, which consists of abundant fine-grained white micas, was associated with the ore zones that are crosscut by the Bousquet Fault. Sericitization was commonly of stronger intensity than epidote alteration and silicification, especially in the upper levels of the mine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aben FM, Doan ML, Mitchell TM (2020) Variation of hydraulic properties due to dynamic fracture damage: implications for fault zones. J Geophys Res Solid Earth 125:e2019JB018919

    Article  Google Scholar 

  • Arancibia G, Fujita K, Hoshino K et al (2014) Hydrothermal alteration in an exhumed crustal fault zone: testing geochemical mobility in the Caleta Coloso Fault, Atacama Fault System, Northern Chile. Tectonophysics 623:147–168

    Article  Google Scholar 

  • Askaripour M, Saeidi A, Mercier-Langevin P et al (2022a) A review of relationship between texture characteristic and mechanical properties of rock. Geotechnics 2:262–296

    Article  Google Scholar 

  • Askaripour M, Saeidi A, Rouleau A et al (2022b) Rockburst in underground excavations: a review of mechanism, classification, and prediction methods. Underground Space 7:577–607. https://doi.org/10.1016/j.undsp.2021.11.008

    Article  Google Scholar 

  • ASTM (2008) D4543–08. Standard practice for preparing rock core specimens and determining dimensional and shape tolerances. In: Annual Book of ASTM Standards. American Society for Testing and Materials, West Conshohocken, PA

    Google Scholar 

  • ASTM (2014) D7012–14. Standard test methods for compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures. American Society for Testing and Materials, West Conshohocken, PA

    Google Scholar 

  • Aubertin M, Gill D (1988) Une methodologie d’evaluation du potentiel de coups de terrain dans les mines d’Abitibi. Colleque sur le Controle de Terrain (AMMQ). Val d'or of Québec Canada 47–77

  • Aubertin M, Gill DE, Simon R (1994) On the use of the brittleness index modified (BIM) to estimate the post-peak behavior of rocks. In: 1st North American Rock Mechanics Symposium. American Rock Mechanics Association

    Google Scholar 

  • Barrett TJ (1994) Chemostratigraphy and hydrothermal alteration in exploration for VHMS deposits in greenstones and younger volcanic rocks. Alterat Alteration Proc Assoc Oreformi Sys 11:433–465

    Google Scholar 

  • Barton N (2013) Shear strength criteria for rock, rock joints, rockfill and rock masses: problems and some solutions. J Rock Mech Geotech Eng 5:249–261

    Article  Google Scholar 

  • Bieniawski ZT (1989) Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. John Wiley & Sons

    Google Scholar 

  • Blake W (1972) Rock-burst mechanics. Q. Colo. Sch. Mines 67:1. https://www.osti.gov/biblio/5298057

  • Brengman LA, Fedo CM, Whitehouse MJ et al (2020) Textural, geochemical, and isotopic data from silicified rocks and associated chemical sedimentary rocks in the ~ 2.7 Ga Abitibi greenstone belt, Canada: Insight into the role of silicification, Canada. Precambrian Research 351. https://doi.org/10.1016/j.precamres.2020.105946

  • Cai M (2013) Principles of rock support in burst-prone ground. Tunn Undergr Space Technol 36:46–56

    Article  Google Scholar 

  • Chen J, Verberne B, Niemeijer A (2020) Flow-to-friction transition in simulated calcite gouge: experiments and microphysical modeling. J Geophys Res Solid Earth 125:e2020JB019970

    Article  Google Scholar 

  • Ciceri D, de Oliveira M, Chen DP et al (2020) Role of processing temperature and time on the hydrothermal alteration of K-feldspar rock in autoclave. Min Metallurg Explor 37:955–963

    Google Scholar 

  • Dora M, Randive K (2015) Chloritisation along the Thanewasna shear zone, Western Bastar Craton, Central India: its genetic linkage to Cu–Au mineralisation. Ore Geol Rev 70:151–172

    Article  Google Scholar 

  • Gifkins C, Herrmann W, Large RR (2005) Altered volcanic rocks: a guide to description and interpretation. Centre for Ore Deposit Research University of Tasmania

    Google Scholar 

  • Gill DE, Aubertin M, Simon R (1993) A practical engineering approach to the evaluation of rockburst potential. Rockburst and Seismicity in Mines. Balkema, Rotterdam, pp 63–68

    Google Scholar 

  • Hoek E, Carranza-Torres C, Corkum B (2002) Hoek-Brown failure criterion-2002 edition. Proc NARMS-Tac 1:267–273

    Google Scholar 

  • Hollingsworth J, Ye L, Avouac JP (2017) Dynamically triggered slip on a splay fault in the Mw 7.8, 2016 Kaikoura (New Zealand) earthquake. Geophys Res Lett 44:3517–3525

    Article  Google Scholar 

  • Hucka V, Das B (1974) Brittleness determination of rocks by different methods. Int J Rock Mech Min Sci Geomech Abstracts 11:389. https://doi.org/10.1016/0148-9062(74)91109-7

  • IAMGOLD (2020) The Westwood Project. Technical report for the Westwood mine, Quebec NI 43-101 Report. https://www.iamgold.com

  • Kaiser PK, Cai M (2012) Design of rock support system under rockburst condition. J Rock Mech Geotech Eng 4:215–227

    Article  Google Scholar 

  • Kwasniewski M, Szutkowski I, Wang J (1994) Study of ability of coal from seam 510 for storing elastic energy in the aspect of assessment of hazard in Porabka-Klimontow Colliery. Sci Rept Silesian Technical University

    Google Scholar 

  • Lafrance B, Moorhead J, Davis D (2002) Cadre géologique du camp minier de Doyon-Bousquet-LaRonde: ministère des Ressources naturelles, de la Faune et des Parcs du Québec. ET 7:43

    Google Scholar 

  • Lawley CJ, Dubé B, Mercier-Langevin P et al (2015) Defining and mapping hydrothermal footprints at the BIF-hosted Meliadine gold district, Nunavut. Can J Geochem Explor 155:33–55

    Article  Google Scholar 

  • Le Bas M (1986) A chemical classification of volcanic rocks based on the total alkali-silica system. J Petrol 27:247–257

    Article  Google Scholar 

  • Małkowski P, Ostrowski Ł (2017) The methodology for the Young modulus derivation for rocks and its value. Procedia Eng 191:134–141

    Article  Google Scholar 

  • Mathieu L (2018) Quantifying hydrothermal alteration: a review of methods. Geosciences 8:245

    Article  Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Mercier-Langevin P, Wright-Holfeld A, Dubé B et al (2009) Stratigraphic setting of the Westwood-Warrenmac ore zones. Westwood Project, Doyon-Bousquet-LaRonde mining camp, Abitibi, Quebec, Geological Research of Canada

    Google Scholar 

  • Mercier-Langevin P, Wright-Holfeld A, Dubé B et al (2008) Le Projet Westwood, nouvelle découverte dans le camp minier Doyon-Bousquet-LaRonde; contexte géologique et métallogénique. Abitibi Géosciences 1:16–17

  • Mines É, Gill DE, Simon R (1994) Une étude sur l'utilisation de l'indice de fragilité modifié. BIM

    Google Scholar 

  • Ortlepp W, Stacey T (1994) Rockburst mechanisms in tunnels and shafts. Tunn Undergr Space Technol 9:59–65

    Article  Google Scholar 

  • Ortlepp WD (1997) Rock fracture and rockbursts: an illustrative study. South African Institute of Mining and Metallurgy

    Google Scholar 

  • Ortlepp WD (2001) The behaviour of tunnels at great depth under large static and dynamic pressures. Tunn Undergr Space Technol 16:41–48

    Article  Google Scholar 

  • Pacey A, Wilkinson JJ, Boyce AJ et al (2020) Magmatic fluids implicated in the formation of propylitic alteration: oxygen, hydrogen, and strontium isotope constraints from the Northparkes porphyry Cu-Au district, New South Wales. Austr Econ Geol 115:729–748

    Article  Google Scholar 

  • Palmstrom A, Broch E (2006) Use and misuse of rock mass classification systems with particular reference to the Q-system. Tunn Undergr Space Technol 21:575–593

    Article  Google Scholar 

  • Parcerisa D, Thiry M, Schmitt J-M (2010) Albitisation related to the Triassic unconformity in igneous rocks of the Morvan Massif (France). Int J Earth Sci 99:527–544

    Article  Google Scholar 

  • Peacock D, Dimmen V, Rotevatn A et al (2017) A broader classification of damage zones. J Struct Geol 102:179–192

    Article  Google Scholar 

  • Pilote J-L, Mercier-Langevin P, Jackson SE et al (2020) Interrogating the composition and genesis of argillitehosted pyrite nodules at the LaRonde Penna gold-rich volcanogenic massive sulphide deposit, Abitibi, Quebec: insights into metallogenic implications. Geol Surv Can Pap 8712:75–91

    Google Scholar 

  • Pirajno F (2009) Hydrothermal processes and wall rock alteration. Springer, Hydrothermal processes and mineral systems, pp 73–164

    Google Scholar 

  • Rabiee A, Rossetti F, Tecce F et al (2019) Multiphase magma intrusion, ore-enhancement and hydrothermal carbonatisation in the Siah-Kamar porphyry Mo deposit, Urumieh-Dokhtar magmatic zone. NW Iran Ore Geol Rev 110:102930

    Article  Google Scholar 

  • Romano V, Bigi S, Carnevale F et al (2020) Hydraulic characterization of a fault zone from fracture distribution. J Struct Geol 135:104036

    Article  Google Scholar 

  • Schuck B, Schleicher AM, Janssen C et al (2020) Fault zone architecture of a large plate-bounding strike-slip fault: a case study from the Alpine Fault. New Zealand Solid Earth 11:95–124

    Article  Google Scholar 

  • Simon R, Aubertin M, Gill DE (1999) Guide d'évaluation du potentiel de coups de terrain dans les mines à l'aide de la méthode ERP. Final report presented in Institut de Recherche en Santé et Sécurité au Travail, IRSST report R:182

  • Steyrer HP, Sturm R (2002) Stability of zircon in a low-grade ultramylonite and its utility for chemical mass balancing: the shear zone at Miéville. Switzerland Chem Geol 187:1–19

    Article  Google Scholar 

  • Sutherland R, Townend J, Toy V et al (2017) Extreme hydrothermal conditions at an active plate-bounding fault. Nature 546:137–140

    Article  Google Scholar 

  • Tremblay K (2019) 3-D modelling of the Bousquet Fault in the Westwood Mine and determining the geomechanical parameters of the rock mass along the fault (Master). Université du Québec à Chicoutimi

    Google Scholar 

  • Wang J-A, Park H (2001) Comprehensive prediction of rockburst based on analysis of strain energy in rocks. Tunn Undergr Space Technol 16:49–57

    Article  Google Scholar 

  • Wenning QC, Madonna C, Zappone A et al (2021) Shale fault zone structure and stress dependent anisotropic permeability and seismic velocity properties (Opalinus Clay, Switzerland). J Struct Geol 144:104273

    Article  Google Scholar 

  • Williams RT, Goodwin LB, Mozley PS (2017) Diagenetic controls on the evolution of fault-zone architecture and permeability structure: implications for episodicity of fault-zone fluid transport in extensional basins. Bulletin 129:464–478

    Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343

    Article  Google Scholar 

  • Wright-Holfeld A (2011) The geology and geochemistry of the world-class Westwood deposit. Québec, Université du Québec, Institut national de la recherche scientifique, Abitibi Subprovince

    Google Scholar 

  • Wright-Holfeld A, Mercier-Langevin P, Dubé B (2010) Contrasting alteration mineral assemblages associated with the Westwood deposit ore zones. Doyon-Bousquet-LaRonde mining camp, Abitibi, Quebec, Geological Survey of Canada

    Google Scholar 

  • Wright-Holfeld A, Mercier-Langevin P, Dubé B (2011) Mass changes and element mobility associated with the Westwood deposit ore zones. Doyon-Bousquet-LaRonde mining camp, Abitibi, Quebec, Geological Survey of Canada

    Google Scholar 

  • Wyering L, Villeneuve M, Wallis I et al (2014) Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 288:76–93

    Article  Google Scholar 

  • Yergeau D (2015) Géologie du gisement synvolcanique aurifère atypique Westwood. Québec, Université du Québec, Institut national de la recherche scientifique, Abitibi

    Google Scholar 

  • Yergeau D, Mercier-Langevin P, Dubé B et al (2022a) The Westwood deposit, southern Abitibi greenstone belt, Canada: an Archean Au-rich polymetallic magmatic-hydrothermal system—Part I. Volcanic architecture, deformation, and metamorphism. Econ Geol 117:545–575

    Article  Google Scholar 

  • Yergeau D, Mercier-Langevin P, Dubé B et al (2022b) The Westwood Deposit, Southern Abitibi Greenstone Belt, Canada: an Archean Au-Rich Polymetallic Magmatic-Hydrothermal System—Part II. Hydrothermal Alteration, Mineralization, and Geologic Model. Econ Geol 117:577–608. https://doi.org/10.5382/econgeo.4879

    Article  Google Scholar 

  • Zhang C, Feng X, Zhou H et al (2012) A top pilot tunnel preconditioning method for the prevention of extremely intense rockbursts in deep tunnels excavated by TBMs. Rock Mech Rock Eng 45:289–309

    Article  Google Scholar 

  • Zhu P, Wang Y, Li T (1996) Griffith theory and the criteria of rock burst. Chin J Rock Mech Eng 15:491–495

    Google Scholar 

  • Zoback, M., S. Hickman and W. Ellsworth, 2007. The role of fault zone drilling.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the organizations that have funded this project: the Natural Sciences and Engineering Research Council of Canada (Grant No. RDCPJ-520428-17), the Geological Survey of Canada through its Targeted Geoscience Initiative Program and Gold Project, and the IAMGOLD Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeil Eslami.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Responsible Editor: François Roure

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eslami, E., Tremblay, K., Seifaddini, M. et al. Evaluation of the impact of fragile-ductile-fault-related hydrothermal alteration on geomechanical parameters in highly anisotropic mine environments—an improved linking of geology and rock mechanics. Arab J Geosci 16, 516 (2023). https://doi.org/10.1007/s12517-023-11624-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-023-11624-6

Keywords

Navigation