Skip to main content

Advertisement

Log in

Investigation of spatio-temporal variability of meteorological drought in the Luni River Basin, Rajasthan, India

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Drought is one of the most serious natural disasters that threaten human societies and environments in nearly every region of the world; therefore, evaluating drought is becoming increasingly important and helpful in eradicating the effects of climate change. This study investigates the spatiotemporal drought pattern over the Luni basin from 1959 to 2019. This research analyzed spatio-temporal drought status using the standardized precipitation index (SPI). The drought trends were analyzed using the Mann-Kendall (MK) test or modified MK test and graphical innovative trend analysis (ITA). The SPI result shows that 39 studied stations are subject to mild to severe drought. The MK/mMK trend test results detected only a monotonic trend of drought across different time ranges and locations within the study area, where the ITA trend test revealed that 43% of the recorded rain gauge stations experienced a non-monotonic negative trend, more than 23% of stations were experienced a monotonic positive trend and 10% non-monotonic positive trend. In addition, with the exception of some small patches of western and eastern parts, the Z statistic result did not reveal any significant trend. The results showed that the ITA approach is more consistent than the MK test and can detect monotonic and non-monotonic trends that the MK method cannot detect. This research provided evidence that drought trends can be studied using the ITA approach, and the results of this analysis would be very useful for identifying droughts to develop effective management plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Achour K, Meddi M, Zeroual A, Bouabdelli S, Maccioni P, Moramarco T, Moramarco T (2020) Spatio-temporal analysis and forecasting of drought in the plains of northwestern Algeria using the standardized precipitation index. J Earth Syst Sci 129(1):1–22. https://doi.org/10.1080/02508060.2018.1541583

    Article  Google Scholar 

  • Ahmad I, Zhang F, Tayyab M, Anjum MN, Zaman M, Liu J, Farid HU, Saddique Q (2018) Spatiotemporal analysis of precipitation variability in annual, seasonal and extreme values over upper Indus River basin. Atmos Res. 213:346–60. https://doi.org/10.1016/j.atmosres.2018.06.019

    Article  Google Scholar 

  • Akturk G, Zeybekoglu U, Yildiz O (2022) Assessment of meteorological drought analysis in the Kizilirmak River Basin, Turkey. Arab J Geosci 15(9):1–15

    Article  Google Scholar 

  • Al-Maktoumi A, Abdalla O, Kacimov A, Zekri S, Chen M, Al-Hosni T, Madani K (eds) (2021) Water resources in arid lands: management and sustainability. Springer International Publishing. https://doi.org/10.1007/978-3-030-67028-3

  • Alsubih M, Mallick J, Talukdar S, Salam R, AlQadhi S, Fattah MA, Thanh NV (2021) An investigation of the short-term meteorological drought variability over Asir Region of Saudi Arabia. Theor Appl Climatol 13:1–21. https://doi.org/10.1007/s00704-021-03647-4

    Article  Google Scholar 

  • Basak A, Das J, Rahman ATMS, Pham QB (2021) An integrated approach for delineating and characterizing groundwater depletion hotspots in a coastal state of India. J Geol Soc India 97(11):1429–1440. https://doi.org/10.1007/s12594-021-1883-z

  • Basak A, Rahman AS, Das J, Hosono T, Kisi O (2022) Drought forecasting using the Prophet model in a semi-arid climate region of western India. Hydrol Sci J 67:1397–1417. https://doi.org/10.1080/02626667.2022.2082876

  • Benzater B, Elouissi A, Dabanli I, Benaricha B, Hamimed A (2021) Extreme rain trend analysis in Macta watershed North West Algeria. Arab J Geosci 14(4):1–4. https://doi.org/10.1007/s12517-021-06636-z

    Article  Google Scholar 

  • Buttafuoco G, Caloiero T, Coscarelli R (2015) Analyses of drought events in Calabria (Southern Italy) using standardized precipitation index. Water Resour Manag. 29(2):557–73. https://doi.org/10.1007/s11269-014-0842-5

    Article  Google Scholar 

  • Caloiero T (2020) Evaluation of rainfall trends in the South Island of New Zealand through the innovative trend analysis (ITA). Theor Appl Climatol 139(1):493–504. https://doi.org/10.1007/s00704-019-02988-5

    Article  Google Scholar 

  • Chhajer D, Naidu K, Shah NV (2015) Study of impact of celebrity endorsement on consumer buying behaviour. International Conference on Technology and Business Management. pp 417–423

    Google Scholar 

  • Citakoglu H, Coşkun Ö (2022) Comparison of hybrid machine learning methods for the prediction of short-term meteorological droughts of Sakarya Meteorological Station in Turkey. Environ Sci Pollut Res 1-25.

  • Czerniak A, Grajewski S, Krysztofiak-Kaniewska A, Kurowska EE, Okoński B, Górna M, Borkowski R (2020) Engineering methods of forest environment protection against meteorological drought in Poland. Forests 11(6):614. https://doi.org/10.3390/f11060614

    Article  Google Scholar 

  • Dabanlı İ, Mishra AK, Şen Z (2017) Long-term spatio-temporal drought variability in Turkey. J Hydrol. 552:779–92. https://doi.org/10.1016/j.jhydrol.2017.07.038

    Article  Google Scholar 

  • Das J (2012) Probability and variability analysis of rainfall characteristics of Dinhata in Koch Behar district of West Bengal. Golden Research Thoughts 2(1):1–9

  • Das J, Bhattacharya SK (2018) Trend analysis of long-term climatic parameters in Dinhata of Koch Bihar district, West Bengal. Spat Inf Res 26(3):271–280. https://doi.org/10.1007/s41324-018-0173-3

  • Das J, Mandal T, Saha P (2019) Spatio-temporal trend and change point detection of winter temperature of North Bengal, India. Spat Inf Res. 27(4):411–24. https://doi.org/10.1007/s41324-019-00241-9

    Article  Google Scholar 

  • Das J, Gayen A, Saha P, Bhattacharya SK (2020a) Meteorological drought analysis using standardized precipitation index over Luni River Basin in Rajasthan, India. SN Appl Sci. 2(9):1–7. https://doi.org/10.1007/s42452-020-03321-w

  • Das J, Mandal T, Sahab P, Kumar Bhattacharya S (2020b) Variability and trends of rainfall using non-parametric approaches: a case study of semi-arid area. Mausam. 71(1):33–44

  • Das J, Rahman AS, Mandal T, Saha P (2020c) Challenges of sustainable groundwater management for large scale irrigation under changing climate in Lower Ganga River basin in India. Groundw Sustain Dev 11:100449. https://doi.org/10.1016/j.gsd.2020.100449

  • Das J, Sakiur RATM, Tapash M, Piu S (2021a) Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India. Environ Dev Sustain 23(5):7289–7309. https://doi.org/10.1007/s10668-020-00917-5

  • Das J, Mandal T, Rahman ATM, Saha P (2021b) Spatio-temporal characterization of rainfall in Bangladesh: an innovative trend and discrete wavelet transformation approaches. Theor Appl Climatol 143(3):1557–1579

  • de Brito CS, da Silva RM, Santos CA, Neto RM, Coelho VH (2021) Monitoring meteorological drought in a semi-arid region using two long-term satellite-estimated rainfall datasets: a case study of the Piranhas River basin. northeastern Brazil. Atmos Res. 250:105380. https://doi.org/10.1016/j.atmosres.2020.105380

    Article  Google Scholar 

  • Dehghani M, Saghafian B, Nasiri Saleh F, Farokhnia A, Noori R (2014) Uncertainty analysis of streamflow drought forecast using artificial neural networks and Monte-Carlo simulation. Int J Climatol. 34(4):1169–80. https://doi.org/10.1002/joc.3754

    Article  Google Scholar 

  • Demir V (2022) Trend analysis of lakes and sinkholes in the Konya Closed Basin, in Turkey. Nat Hazards. https://doi.org/10.1007/s11069-022-05327-6

    Article  Google Scholar 

  • Demir V, Keskin AÜ (2020) Water level change of lakes and sinkholes in Central Turkey under anthropogenic effects. Theor Appl Climatol 142:929–943. https://doi.org/10.1007/s00704-020-03347-5

    Article  Google Scholar 

  • Edwards DC (1997) Characteristics of 20th Century drought in the United States at multiple time scales. Air Force Inst of Tech Wright-Patterson Afb Oh

    Google Scholar 

  • Ganguli P, Reddy MJ (2013) Analysis of ENSO-based climate variability in modulating drought risks over western Rajasthan in India. J Earth Syst Sci. 122(1):253–69

    Article  Google Scholar 

  • Ganguli P, Reddy MJ (2014) Ensemble prediction of regional droughts using climate inputs and the SVM–copula approach. Hydrol Process. 28(19):4989–5009. https://doi.org/10.1002/hyp.9966

    Article  Google Scholar 

  • Golian S, Mazdiyasni O, AghaKouchak A (2015) Trends in meteorological and agricultural droughts in Iran. Theor Appl Climatol. 119(3):679–88. https://doi.org/10.1007/s00704-014-1139-6

    Article  Google Scholar 

  • Gupta A, Dimri AP, Thayyen R, Jain S, Jain S (2020) Meteorological trends over Satluj River Basin in Indian Himalaya under climate change scenarios. J Earth Syst Sci. 129(1):1–8. https://doi.org/10.1007/s12040-020-01424-x

    Article  Google Scholar 

  • Gupta P, Tignath S, Kathal D, Choudhury S, Mukherjee K, Das J, Das J, Bhattacharya SK (2023) Monitoring and managing multi-hazards a multidisciplinary approach groundwater depletion zonation using geospatial technique and TOPSIS in Raipur District Chhattisgarh India. Springer International Publishing Cham, pp 237–7251

  • Haktanir T, Citakoglu H (2015) Closure to “Trend, independence, stationarity, and homogeneity tests on maximum rainfall series of standard durations recorded in Turkey” by Tefaruk Haktanir and Hatice Citakoglu. J Hydrol Eng 20(10):07015017

    Article  Google Scholar 

  • Hayes M, Svoboda M, Wall N, Widhalm M (2011) The Lincoln declaration on drought indices: universal meteorological drought index recommended. Bull Am Meteorol Soc 92(4):485–488. https://doi.org/10.1175/2010BAMS3103.1

    Article  Google Scholar 

  • Hlanze DK, Mulungu DMM, Ndomba P, Tfwala S, Mabaso S, Dlamini WM, Gumindoga W, Mitra R, Das J (2023) Estimating soil loss rate and sediment yield of the proposed Ngololweni Earth Dam, Kingdom of Eswatini. Monitoring and Managing Multi-hazards. Springer, Cham, pp 33–64. https://doi.org/10.1007/978-3-031-15377-8_3

    Chapter  Google Scholar 

  • Kamruzzaman M, Rahman ATMS, Basak A, Alam J, Das J (2022) Assessment and adaptation strategies of climate change through the prism of farmers’ perception: A case study. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-022-04254-0

  • Kendall MG (1975) Multivariate analysis. Griffin, London

    Google Scholar 

  • Khera R (2006) Political economy of state response to drought in rajasthan, 2000–03. Econ Polit Wkly. 16:5163–72

    Google Scholar 

  • Kumar V, Jain SK (2011) Trends in rainfall amount and number of rainy days in river basins of India (1951–2004). Hydrol Res. 42(4):290–306. https://doi.org/10.2166/nh.2011.067

    Article  Google Scholar 

  • Kuriqi A, Ali R, Pham QB, Gambini JM, Gupta V, Malik A, Linh NT, Joshi Y, Anh DT, Dong X (2020) Seasonality shift and streamflow flow variability trends in central India. Acta Geophys. 68(5):1461–75. https://doi.org/10.1007/s11600-020-00475-4

    Article  Google Scholar 

  • Mall RK, Singh R, Gupta A, Srinivasan G, Rathore LS (2006) Impact of climate change on Indian agriculture: a review. Clim Change. 78(2):445–478. https://doi.org/10.1007/s10584-006-9236-x

    Article  Google Scholar 

  • Mallick J, Talukdar S, Alsubih M, Salam R, Ahmed M, Kahla NB, Shamimuzzaman M (2021) Analysing the trend of rainfall in Asir region of Saudi Arabia using the family of Mann-Kendall tests, innovative trend analysis, and detrended fluctuation analysis. Theor Appl Climatol. 143(1):823–41. https://doi.org/10.1007/s00704-020-03448-1

    Article  Google Scholar 

  • Mandal T, Das J, Rahman ATMS, Saha P, Haldar RA, Alam A, Satpati L (2021a) Habitat Ecology and Ekistics Case Studies of Human-Environment Interactions in India Rainfall Insight in Bangladesh and India: Climate Change and Environmental Perspective. Springer International Publishing Cham, pp 53–74

  • Mandal T, Sarkar A, Das J, Rahman ATMS, Chouhan P, Islam MN, van Amstel A (2021b) India: Climate Change Impacts Mitigation and Adaptation in Developing Countries Comparison of Classical Mann–Kendal Test and Graphical Innovative Trend Analysis for Analyzing Rainfall Changes in India. Springer International Publishing Cham, pp 155–183

  • Mandal T, Saha S, Das J, Sarkar A (2022) Groundwater depletion susceptibility zonation using TOPSIS model in Bhagirathi river basin, India. Model Earth Syst Environ 8(2):1711–1731. https://doi.org/10.1007/s40808-021-01176-7

  • Mann HB (1945) Non-parametric tests against trend. Econom J Econom Soc. 1:245–59

    Google Scholar 

  • Masroor M, Rehman S, Avtar R, Sahana M, Ahmed R, Sajjad H (2020) Exploring climate variability and its impact on drought occurrence: evidence from Godavari Middle sub-basin. India. Weather Clim Extrem. 30:100277. https://doi.org/10.1016/j.wace.2020.100277

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. Proc 8th Conf Appl Climatol. 17(22):179–183

    Google Scholar 

  • Mishra V, Thirumalai K, Jain S, Aadhar S (2021) Unprecedented drought in South India and recent water scarcity. Environ Res Lett. 16(5):054007

    Article  Google Scholar 

  • Mitra R, Das J (2022) A comparative assessment of flood susceptibility modelling of GIS-based TOPSIS, VIKOR, and EDAS techniques in the Sub-Himalayan foothills region of Eastern India. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-23168-5

    Article  Google Scholar 

  • Mitra R, Kumar Mandal D (2022) Assessment of livelihood vulnerability in the riparian region of the Tista River, West Bengal, India. Geo J 1-29. https://doi.org/10.1007/s10708-022-10645-0.

  • Mitra R, Saha P, Das J (2022) Assessment of the performance of GIS-based analytical hierarchical process (AHP) approach for flood modelling in Uttar Dinajpur district of West Bengal, India. Geomatics Nat Hazards Risk 13(1):2183–2226. https://doi.org/10.1080/19475705.2022.2112094

    Article  Google Scholar 

  • Mitra R, Roy D (2022) Delineation of groundwater potential zones through the integration of remote sensing, geographic information system, and multi-criteria decision-making technique in the sub-Himalayan foothills region, India. Int J Energy Water Res 1-21. https://doi.org/10.1007/s42108-022-00181-5.

  • Mundetia N, Sharma D (2015) Analysis of rainfall and drought in Rajasthan State, India. Global Nest. 17(1):12–21

    Google Scholar 

  • Murthy CS, Sesha Sai MV (2010) Agriculture drought monitoring and assessment. remote Sensing

    Google Scholar 

  • Patel NR, Chopra P, Dadhwal VK (2007) Analyzing spatial patterns of meteorological drought using standardized precipitation index. Meteorol Appl J Forecast Pract Appl Train Tech Model. 14(4):329–36. https://doi.org/10.1002/met.33

    Article  Google Scholar 

  • Pathak AA, Dodamani BM (2020) Trend analysis of rainfall, rainy days and drought: a case study of Ghataprabha River Basin, India. Model Earth Syst Environ. 6(3):1357–72. https://doi.org/10.1007/s40808-020-00798-7

    Article  Google Scholar 

  • Piniewski M, Marcinkowski P, Kundzewicz ZW (2018) Trend detection in river flow indices in Poland. Acta Geophys. 66(3):347–60. https://doi.org/10.1007/s11600-018-0116-3

    Article  Google Scholar 

  • Poddar I, Alam J, Basak A, Mitra R, Das J (2023) Application of a geospatial-based subjective MCDM method for flood susceptibility modeling in Teesta River Basin, West Bengal, India. Monitoring and Managing Multi-hazards. Springer, Cham, pp 135–152. https://doi.org/10.1007/978-3-031-15377-8_10

    Chapter  Google Scholar 

  • Rathore JS (2004) Drought and household coping strategies: a case of Rajasthan. Indian J Agric Econ. 59(4):689–708

    Google Scholar 

  • Rostamian R, Eslamian S, Farzaneh MR (2013) Application of standardised precipitation index for predicting meteorological drought intensity in Beheshtabad watershed, central Iran. Int J Hydrol Sci Technol 3(1):63–77

    Article  Google Scholar 

  • Roy D, Das S, Mitra R (2022) An application of geospatial-based multi-criteria decision-making technique to identify landslide susceptibility zones in the Ragnu Khola River Basin of Darjeeling Himalayan region India. Appl Geomat 14(4):731–749. https://doi.org/10.1007/s12518-022-00468-6

  • Saha P, Mitra R, Chakraborty K, Roy M (2022) Application of multi layer perceptron neural network Markov Chain model for LULC change detection in the Sub-Himalayan North Bengal. Remote Sens Appl Soc Environ 26:100730. https://doi.org/10.1016/j.rsase.2022.100730

    Article  Google Scholar 

  • Şen Z (2012) Innovative trend analysis methodology. J Hydrol Eng. 17(9):1042–6. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000556

    Article  Google Scholar 

  • Shewale MP, Kumar S (2005) Climatological features of drought incidences in India. Meteorological Monograph (Climatology 21/2005). National Climate Centre, Indian Meteorological Department

  • Sirdaş S, Sen Z (2003) Spatio-temporal drought analysis in the Trakya region, Turkey. Hydrol Sci J. 48(5):809–20. https://doi.org/10.1623/hysj.48.5.809.51458

    Article  Google Scholar 

  • Thom HC (1958) A note on the gamma distribution. Mon Weather Rev. 86(4):117–122. https://doi.org/10.1175/1520-0493(1958)086%3C0117:ANOTGD%3E2.0.CO;2

    Article  Google Scholar 

  • Tran TV, Tran DX, Huynh PD, Dao HN, Vo TM, Trinh HP, Tran XQ (2020) Analysing drought intensity in the Mekong River Delta using time series analysis and Google Earth Engine. Int J Geoinformatics 16(1).

  • Uddin MJ, Hu J, Islam AR, Eibek KU, Nasrin ZM (2020) A comprehensive statistical assessment of drought indices to monitor drought status in Bangladesh. Arab J Geosci. 13(9):1. https://doi.org/10.1007/s12517-020-05302-0

    Article  Google Scholar 

  • Yagbasan O, Yazicigil H, Demir V (2017) Impacts of climatic variables on water-level variations in two shallow Eastern Mediterranean lakes. Environ Earth Sci 76:575. https://doi.org/10.1007/s12665-017-6917-x

    Article  Google Scholar 

  • Yin Y, Xu CY, Chen H, Li L, Xu H, Li H, Jain SK (2016) Trend and concentration characteristics of precipitation and related climatic teleconnections from 1982 to 2010 in the Beas River basin, India. Glob Planet Change. 145:116–29. https://doi.org/10.1016/j.gloplacha.2016.08.011

    Article  Google Scholar 

  • Yue S, Wang C (2004) The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Res Manag. 18(3):201–18. https://doi.org/10.1023/B:WARM.0000043140.61082.60

    Article  Google Scholar 

  • Zeybekoğlu U, Aktürk G (2021) A comparison of the China-Z index (CZI) and the standardized precipitation index (SPI) for drought assessment in the Hirfanli Dam basin in central Turkey. Arab J Geosci 14(24):1–13

    Article  Google Scholar 

  • Zhang R, Chen ZY, Xu LJ, Ou CQ (2016) Meteorological drought forecasting based on a statistical model with machine learning techniques in Shaanxi province, China. Sci Total Environ. 665:338–46

    Article  Google Scholar 

  • Zhao R, Wang H, Zhan C, Hu S, Ma M, Dong Y (2020) Comparative analysis of probability distributions for the standardized precipitation index and drought evolution in China during 1961–2015. Theor Appl Climatol. 139(3):1363–77. https://doi.org/10.1007/s00704-019-03050-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Das.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Zhihua Zhang

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, J., Saha, P., Mitra, R. et al. Investigation of spatio-temporal variability of meteorological drought in the Luni River Basin, Rajasthan, India. Arab J Geosci 16, 201 (2023). https://doi.org/10.1007/s12517-023-11290-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-023-11290-8

Keywords

Navigation