Skip to main content
Log in

Effect of apron length on local scour at the downstream of grade control structures with labyrinth planform

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Grade control structures are commonly used for river restoration projects by changing the upstream river bed slope and the approaching flow conditions. Thus, a safe design of grade control structures needs to consider several aspects especially scour process. In the current study, effects of the apron length at the downstream of grade control structures with trapezoidal labyrinth planforms on the main scour parameters like maximum scour depth and length have been experimentally investigated. Experiments are conducted in clear water conditions, over a wide range of upstream flow discharges and two downstream tailwater depths. The trapezoidal labyrinth planform weirs had two and three cycles with different sidewall angles, width and length of cycles in the flow direction. The comparison of results showed that by installing the apron with a length of B (length of the cycle in the direction of flow), the maximum scour depth decreased 34% on average. By increasing the apron’s length to B/HF + 1/2 and B/HF + 1 (HF = height of flow downstream sedimentary bed), the maximum scour depth reduced 62% and 79%, respectively. In addition, to estimate the effect of an apron on the reduction of scour depth downstream of trapezoidal-labyrinth grade control structures, a regression relationship was derived to estimate the desired parameter with acceptable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(A\) (L):

Apex width of cycles

\(B\) (L):

Length of cycles

\(C_{0}\) :

Velocity coefficient and is equal to 0.672

\(d\) (L):

Sediment diameter

\(d_{s}\) (L):

Equilibrium scour depth

\(d_{st}\) (L):

Temporal scour depth

F 0 :

Densmetric Froude numbers, defined as \(F_{0} = U_{0} /(\Delta gd)^{0.5}\)

\(h_{0}\) (L):

Height of weirs above tailwater level

\(h_{t}\) (L):

Tailwater depth

\(H_{F}\) (L):

Height of falling

\(g\) (LT−2):

Gravitational acceleration

\({\text{G}}_{{\text{s}}} { = }{{\rho_{s} } \mathord{\left/ {\vphantom {{\rho_{s} } \rho }} \right. \kern-\nulldelimiterspace} \rho }\) :

Relative density of sediments

\(I_{Exp}\) and \(\overline{I}_{Exp}\) (L):

The experimental and average of experimental data, respectively

\(I_{c}\) (L):

Computed data

\(L_{e}\) (L):

Effective weir length

\(L_{A}\) (L):

Apron length

\(P\) (L):

Weir height

\(t\) (T):

Time

\(t_{e}\) (T):

Equilibrium scour time

\(U_{0}\) (LT−1):

Velocity of jet when it enters tailwater

\(U_{c}\) (LT−1):

Critical flow velocity

\(W\) (L):

Width of cycles

\(y_{0}\) (L):

Thickness of jet entering tailwater

\(y_{0}\) (L):

Critical flow depth

\(y_{e}\) (L):

End depth

\(\rho\) :

(ML−3) Mass density of water

\(\rho_{s}\) :

(ML−3) Mass density of sediments

\(\vartheta\) :

(L2T−1) Kinematic viscosity of water

\(\alpha\) :

Downstream cycle sidewall angle

:

Gs-1

References

  • Aamir M, Ahmad Z (2019) Estimation of maximum scour depth downstream of an apron under submerged wall jets. J Hydroinf 21(4):523–540

    Article  Google Scholar 

  • Aamir M, Ahmad Z (2021) Effect of apron roughness on flow characteristics and scour depth under submerged wall jets. Acta Geophys. (2021). https://doi.org/10.1007/s11600-021-00672-9

  • Ali KHM, Neyshaboury AAS (1991) Localized scour downstream of a deeply submerged horizontal jet. Proc Inst Civ Eng 91(2):1–18

    Google Scholar 

  • Bakhmeteff BA (1932) Hydraulics of open channels. McGraw-Hill, New York

    Google Scholar 

  • Bhuiyan F, Hey RD, Wormleaton PR (2007) Hydraulic evaluation of w-weir for river restoration. J Hydraul Eng 133(6):596–609

    Article  Google Scholar 

  • Borman NE, Julien PY (1991) Scour downstream of grade control structures. J Hydraul Eng 117(5):579–594

    Article  Google Scholar 

  • Chatterjee SS, Ghosh SN, Chatterjee M (1994) Local scour due to submerged horizontal jet. J Hydraul Eng 120(8):973–992

    Article  Google Scholar 

  • Chaudhary RK, Zulfequar A, S.K., Mishra. (2022) Scour downstream of a corrugated apron under wall jets. Water Practice and Technology 17(1):204–222

    Article  Google Scholar 

  • D’Agostino V, Ferro V (2004) Scour on alluvial bed downstream of grade-control structures. J Hydraul Eng 130:1(24):24–37

  • Dey S, Raikar RV (2005) Scour in long contractions. J Hydraul Eng 131(12):1036–1049

    Article  Google Scholar 

  • Dey S, Raikar RV (2007) Scour below a high vertical drop. J Hydraul Eng 133(5):564–568

    Article  Google Scholar 

  • Dey S, Sarkar A (2004) Review on local scour due to jets. Int J Sedim Res 19(3):210–238

    Google Scholar 

  • Dey S, Westrich B (2003) Hydraulics of submerged jet subject to change in cohesive bed geometry. J Hydraul Eng 129(1):44–53

    Article  Google Scholar 

  • Dey S, Sarkar A (2006) Scour downstream of an apron due to submerged horizontal jets. J Hydraul Eng 132(3):246–257

    Article  Google Scholar 

  • Esmaeili Varaki M, Kurdistani SM, Noormohammadi G (2021) Scour morphology downstream of submerged block ramps. J App Water Eng Res https://doi.org/10.1080/23249676.2021.1908918

  • Gaudio R, Marion A, Bovolin V (2000) Morphological effects of bed eills in degrading rivers. J Hydr Res 38(2):89–96

    Article  Google Scholar 

  • Justrich S, Pfister and M, Schleiss A (2016) Mobile river scour downstream of a piano key weir. J Hydraul Eng 142(11). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001189

  • Kells JA, Balachandar R, Hagel KP (2001) Effect of grain size on local channel scour below a sluice gate. Can J Civ Eng 28(3):440–451

    Article  Google Scholar 

  • Kurdistani SM, Pagliara S (2015) Scour characteristics downstream of grade-control structures: Log-vane and log-deflectors comparison World Environmental and Water Resources Congress 2015: Floods, Droughts, and Ecosystems. ASCE, Reston, VA, pp 1831–1840

    Google Scholar 

  • Kurdistani SM, Palermo M, Pagliara S, Hassanabadi LS (2018) Scour Morphology Downstream of Log-Frame Deflectors in Series 7th IAHR International Symposium on Hydraulic Structures. Aachen, Germany. https://doi.org/10.15142/T3835R,291-299

    Article  Google Scholar 

  • Kurdistani SM, Pagliara S (2017) Experimental study on cross-vane scour morphology in curved horizontal channels. J Irrig Drain Eng 143(7):1–9

    Article  Google Scholar 

  • Lenzi MA, Marion A, Comiti F, Gaudio R (2002) Local scouring in low and high gradient streams at bed sills. J Hydr Res 40(6):731–739

    Article  Google Scholar 

  • Lenzi MA, Marion A, Comiti F (2003) Local scouring at grade-control structures in alluvial mountain rivers. Water Resour Res 39(7):1176–1188

    Article  Google Scholar 

  • Lu JY, Hong JH, Chang KP, Lu TF (2013) Evolution of scouring process downstream of grade-control structures under steady and unsteady flows. Hydrol Process 27(19):2699–2709

    Article  Google Scholar 

  • Mason PJ, Arumugam K (1985) Free jet scour below dams and flip buckets. J Hydraul Eng 111(2):220–235

    Article  Google Scholar 

  • Melville BW, Lim SY (2013) Scour caused by 2D horizontal jets. J Hydraul Eng 140(2): https://doi.org/10.1061/1943-7900.0000807

  • Oliveto G (2013) Local scouring downstream of a spillway with an apron. Proc Inst Civ Eng 166(5):254–261

    Google Scholar 

  • Pagliara S, Kurdistani SM (2015) Clear water scour at J-Hook Vanes in channel bends for stream restorations. Ecol Eng 83:386–393

    Article  Google Scholar 

  • Pagliara S, Kurdistani SM (2017) Flume experiments on scour downstream of wood stream restoration structures. Geomorphology 279:141–149

    Article  Google Scholar 

  • Pagliara S, Kurdistani SM (2014) Scour characteristics downstream of grade-control structures River Flow 2014. Schleiss et al. (Eds). 2093–2098. Taylor & Francis Group. London

  • Pagliara S, Palermo M (2013) Rock grade control structures and stepped gabion weirs: Scour analysis and flow features. Acta Geophys 61(1):126–150

    Article  Google Scholar 

  • Pagliara S, Palermo M, Roy D (2020) Experimental investigation of erosion processes downstream of block ramps in mild curved channels. Env Fluid Mec 20:339–356

    Article  Google Scholar 

  • Rajaei A, Esmaeili Varaki M, Shafei Sabet B (2020) Experimental investigation on local scour at the downstream of grade control structures with labyrinth planform. ISH J Hydraul Eng 26(4):457–467. https://doi.org/10.1080/09715010.2018.1502627

    Article  Google Scholar 

  • Rajaratnam N, Macdougall K (1983) Erosion by plane wall jets with minimum tailwater. J Hydraul Div Am Soc Ciu Engrs 109(7):1061–1064

    Article  Google Scholar 

  • Scurlock SM, Cristopher LT, Steven RA (2012) Equilibrium scour downstream of three-dimensional grade control structures. J Hydraul Eng 138(2):167–176

    Article  Google Scholar 

  • Shan J, Toth CK (2018) Topographic laser ranging and scanning: principles and processing. CRC Press, Taylor & Francis Group, Boca Raton, FL, USA. ISBN 9781498772273

  • Termini D (2011) Bed scouring downstream of hydraulic structures under steady flow conditions: experimental analysis of space and time scales and implications for mathematical modeling. CATENA 84:125–135

    Article  Google Scholar 

  • Termini D, Sammartano V (2012) Morphodynamic processes downstream of man-made structural interventions: experimental investigation of the role of turbulent flow structures in the prediction of scour downstream of a rigid bed. Phys Chem Earth 49:18–31

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Esmaeili Varaki.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Amjad Kallel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varaki, M.E., Sedaghati, M. & Sabet, B.S. Effect of apron length on local scour at the downstream of grade control structures with labyrinth planform. Arab J Geosci 15, 1240 (2022). https://doi.org/10.1007/s12517-022-10522-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-10522-7

Keywords

Navigation