Skip to main content

Advertisement

Log in

Drought impact detection on wetlands in the arid area using Synthetic Aperture Radar data

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Wetland conservation is crucial in arid areas on account of the high dependence of life on these ecosystems. Quantifying the effects of drought on wetlands is the initial step toward conservation action under drought condition. In this study, the ability of Synthetic Aperture Radar (TerraSAR-X and Sentinel 1 images) to detect the drought impacts on wetlands in arid areas was investigated. Synthetic Aperture Radar signals (SAR) acquired in dry and wet periods at two wavelengths (X-band ~ 3 cm, C-band ~ 6 cm), three polarizations (HH, VV, and VH), and three incidence angles (22°, 34°, and 53°) were applied. Primarily, the discrimination ability of each SAR data was assessed using the Transformed Divergence and Bhattacharyya Distance. The best image to create the wetland cover classes during wet and dry conditions was determined accordingly. The SAR images were classified employing the Support vector machine method and the classified images were assessed using n-folds cross-validation. Degradation in wetland cover classes as an index of drought-induced damage in the wetland was determined using a comparison between the flooded and dry conditions. Based on the findings of this paper, Sentinel-1 (C band) is of the ability to determine the degradation of wetland cover classes since it is capable of quantifying the increase in dead plants and bare lands. This study illustrated the potential of SAR data as a tool in arid land studies and could also promote the application of SAR data in wetland management. Free access to Sentinel-1 data and the 6-day overpass makes these data favorable images for wetland research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Ali M (2011) Assessment of high resolution SAR imagery for mapping floodplain water bodies: a comparison between RADARSAT-2 and TerraSAR-X. Durham University, PhD diss.

    Google Scholar 

  • Antonova S, Kaab A, Heim B, Langer M, Boike J (2016) Spatio-temporal variability of X-band radar backscatter and coherence over the Lena River Delta. Siberia Remote Sens Environ 182:169–191

    Article  Google Scholar 

  • Aubert M, Baghdadi B, Zribi M, Douaoui A, Loumagne C, Baup F, El Hajj M, Garrigues S (2011) Analysis of TerraSAR-X data sensitivity to bare soil moisture, roughness, composition and soil crust. Remote Sens Environ 115:1801–1810

    Article  Google Scholar 

  • Baghdadi N, Zribi M, Loumagne C, Ansart P, Anguela TP (2008) Analysis of TerraSAR-X data and their sensitivity to soil surface parameters over bare agricultural fields. Remote Sens Environ 112:4370–4379

    Article  Google Scholar 

  • Bai Y, Feng M, Jiang H, Wang J, Liu Y (2015) Validation of Land Cover Maps inChina Using a Sampling-based Labeling Approach. Remote Sens. 7(8):10589–10606

    Article  Google Scholar 

  • Baghdadi N, Cresson R, El Hajj M, Ludwig R, Jeunesse L (2012) Estimation of soil parameters over bare agriculture areas from C-band polarimetric SAR data using neural networks. Hydrol Earth Syst Sci 16:1608–1621

    Article  Google Scholar 

  • Beek E, Meier K (2006) Integrated water resources management for the Sistan closed inland delta, Iran. Delft, Netherlands: Delft Hydraulics

  • Behrouzi-rad B (2009) Waterbird populations during dry and wet years in the Hamoun Wetlands Complex. Podoces 4:88–99

    Google Scholar 

  • Bigdeli B, Samadzadegan F, Reinartz P (2013) A multiple SVM system for classification of hyperspectral remote sensing data. J Indian Soc Remote Sens 41:763–776

    Article  Google Scholar 

  • Bousbih S, Zribi M, Pelletier C, Gorrab A, Lili-Chabaane Z, Baghdadi N, Ben Aissa N, Mougenot B (2019) Soil Texture Estimation Using Radar and Optical Data from Sentinel-1 and Sentinel-2. Remote Sens. 11(13):1520

    Article  Google Scholar 

  • Bourgeau-Chavez L, Smith K, Brunzell S, Kasischke E, Romanowicz B, Richardson C (2005) Remote monitoring of regional inundation patterns and hydroperiod in the Greater Everglades using Synthetic Aperture Radar. Wetlands 25:176–191

    Article  Google Scholar 

  • Brisco B, Kapfer M, Hirose M, Tedford B, Liu J (2011) Evaluation of C-band polarization diversity and polarimetry for wetland mapping. Can J Remote Sens 37:82–92

    Article  Google Scholar 

  • Corcione V, Nunziata L, Mascolo L, Migliaccio M (2016) A study of the use of COSMO-SkyMed SAR ping pong polarimetric mode for rice growth monitoring. Int J Remote Sens 37(3):633–647

    Article  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-Vector Networks. Machine Learning 20:273–297

    Google Scholar 

  • Cunha APM, Alvalá RC, Nobre CA, Carvalho MA (2015) Monitoring vegetative drought dynamics in the Brazilian semiarid region. Agric For Meteorol 214:494–505

    Article  Google Scholar 

  • Dabboor M, Howell S, Shokr M, Yackel J (2014) The Jeffries-Matusita distance for the case of complex Wishart distribution as a separability criterion for fully polarimetric SAR data. Int J Remote Sens 35(19):6859–6873

    Google Scholar 

  • Dabrowska-Zielinska K, Budzynska M, Tomaszewska M, Bartold M, Gatkowska M, Malek I et al (2014) Monitoring wetlands ecosystems using ALOS PALSAR (L-Band, HV) supplemented by optical data: a case study of Biebrza wetlands in northeast Poland. Remote Sens 6:1605–1633

    Article  Google Scholar 

  • Debela MT, Wu Q, Li Z, Sun X, Omeno O, Li Y (2021) Habitat suitability assessment of wintering herbivorous anseriformes in Poyang Lake. China Diversity 13(4):171

    Article  Google Scholar 

  • Dikshit A, Pradhan B, Santosh M (2022) Artificial neural networks in drought prediction in the 21st century–a scientometric analysis. Appl Soft Comput 114:108080

    Article  Google Scholar 

  • Downard R, Endter-Wada J, Kettenring K (2014) Adaptive wetland management in an uncertain and changing arid environment. Ecol and Soci 19(2):23–39

    Article  Google Scholar 

  • Feng M, Jiang H, Wang J, Liu Y (2015) Validation of land cover maps in China using a sampling-based labeling approach. Remote Sens 7(8):10589–10606

  • Gallant A (2015) The challenges of remote monitoring of wetlands. Remote Sens 7:10938–10950

    Article  Google Scholar 

  • Grady D, Leblanc M, Bass A (2014) The use of radar satellite data from multiple incidence angles improves surface water mapping Rem. Sens. Environ. 140:652–664

    Article  Google Scholar 

  • Ghoggali N, Melgani F (2009) Automatic Ground-Truth Validation with Genetic Algorithms for Multispectral Image Classification. IEEE Trans Geosci Remote Sens IEEE TGEOSCI REMOTE 47(7):2172–2181

    Article  Google Scholar 

  • Grings FM, Ferrazzoli P, Jacobo-Berlles JC, Karszenbaum H, Tiffenberg J, Pratolongo P, Kandus P (2006) Monitoring flood condition in marshes using EM models and Envisat ASAR observations. IEEE Trans Geosci Remote Sens 44:936–942

    Article  Google Scholar 

  • Henderson FM, Lewis AJ (2008) Radar detection of wetland ecosystems: a review. Int J Remote Sens 29:5809–5835

    Article  Google Scholar 

  • Hong S, Wdowinski J, Kim S, Won S (2010) Multi-temporal monitoring of wetland water levels in the Florida Everglades using interferometric synthetic aperture radar (InSAR). Remote Sens Environ 114:2436–2447

    Article  Google Scholar 

  • Hoque MAA, Pradhan B, Ahmed N (2020) Assessing drought vulnerability using geospatial techniques in northwestern part of Bangladesh. Sci Total Environ 705:135957

    Article  Google Scholar 

  • Huang C, Peng Y, Lang M, Yeo IY, McCarty G (2014) Wetland inundation mapping and change monitoring using Landsat and airborne LiDAR data. Remote Sens Environ 141:231–242

    Article  Google Scholar 

  • Huang H, Roy D P, Boschetti L, Zhang H K, Yan L, Kumar S S, ..., Li J (2016) Separability analysis of Sentinel-2A Multi-Spectral Instrument (MSI) data for burned area discrimination. Remote Sens 8(10):873

  • Hyde P, Dubayah R, Walker W (2006) Mapping forest structure for wildlife habitat analysis. Remote Sens Environ 102:63–73

    Article  Google Scholar 

  • Jia M, Tong Y, Zhang Y, Chen Y (2013) Multitemporal radar backscattering measurement of wheat fields using multifrequency (L, S, C, and X) and full-polarization. Radio Sci 48:471–481

    Article  Google Scholar 

  • Kantakomar LN, Neelamsetti P (2015) Multi-temporal land use classification using hybrid approach. Egypt J Remote Sens 18(2):289–295

    Google Scholar 

  • Klein D, A Moll, G Menz (2004) Land cover/use classification in a semiarid environment in East Africa using multi-temporal alternating polarization ENVISAT ASAR Data. ENVISAT & ERS Symposium, Salzburg, September 6–10

  • Klemas V (2013) Using remote sensing to select and monitor wetland restoration sites: an overview. J Coast Res 29:958–970

    Article  Google Scholar 

  • Kuenzer C, Knauer K (2013) Remote sensing of rice crop areas. Int J Remote Sens 34(6):2101–2139

    Article  Google Scholar 

  • Lang M, Kasischke E (2008) Using C-band synthetic aperture radar data to monitor forested wetland hydrology in Maryland’s coastal plain, USA. IEEE Trans Geosci Remote Sens 64:535–547

    Article  Google Scholar 

  • Maleki S, Soffianian AR, Koupaei SS, Saatchi S, Pourmanafi S, Sheikholeslam F (2016) Habitat mapping as a tool for water birds conservation planning in an arid zone wetland: the case study Hamoun wetland. Ecol Eng 95:594–603

    Article  Google Scholar 

  • Maleki S, Soffianian AR, Koupaei SS, Pourmanafi S, Saatchi S (2018) Wetland restoration prioritizing, a tool to reduce negative effects of drought; an application of multicriteria-spatial decision support system (MC-SDSS). Ecol Eng 112:132–139

    Article  Google Scholar 

  • Maleki S, Baghdadi N, Soffianian A, El Hajj M, Rahdari V (2020) Analysis of multi-frequency and multi-polarization SAR data for wetland mapping in Hamoun-e-Hirmand wetland. Int J Remote Sens 41(6):2277–2302

    Article  Google Scholar 

  • McCauley S, Goetz SJ (2004) Mapping residential density patterns using multi-temporal Landsat data and a decision-tree classifier. Int J Remote Sens 25 (6) 1077–1094

  • Minckley TA, Turner TS, Weinstein SR (2013) The relevance of wetland conservation in arid regions: a re-examination of vanishing communities in the American Southwest. J Arid Environ 88:213–221

    Article  Google Scholar 

  • Miri A, Dragovich D, Dong Z (2019) Wind-borne sand mass flux in vegetated surfaces–wind tunnel experiments with live plants. CATENA 172:421–434

    Article  Google Scholar 

  • Niculescu S, Boissonnat B, Lardeux C, Roberts D, Hanganu J, Billey A, Doroftei M (2020) Synergy of high-resolution radar and optical images satellite for identification and mapping of wetland macrophytes on the Danube Delta. Remote Sens 12(14):2188

    Article  Google Scholar 

  • Nikraftar Z, Mostafaie A, Sadegh M, Afkueieh JH, Pradhan B (2021) Multi-type assessment of global droughts and teleconnections. Weather Clim Extremes 34:100402

    Article  Google Scholar 

  • Papa F, Frappart F (2021) Surface water storage in rivers and wetlands derived from satellite observations: a review of current advances and future opportunities for hydrological sciences. Remote Sens 13(20):4162

    Article  Google Scholar 

  • Pal M (2005) Random forest classifier for remote sensing classification. Int J Remote Sens. 26:217–222

  • Pelletier C, Valero S, Inglada J, Champion N, Dedieu G (2016) Assessing the robustness of Random Forests to map land cover with high resolution satellite image timeseries over large areas. Remote Sens Environ 187:156–168

  • Peng C, Ma Z, Lei X, Zhu Q, Chen H, Wang W, Zhou X (2011) A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat Clim Change 1(9):467–471

  • Rahdari V, Maleki Najafabad S, Afsari KH, Abtin E, Pri H (2012) Change detection of Hmoun wild life refuge using RS & GIS. Remote sensing and GIS Journal. Iranian Remote. Sens GIS Soci 3(2):5970

  • Ramsar Convention Secretariat (2016) The list of wetlands of international importance

  • Saha S, Kundu B, Paul G C, Mukherjee K, Pradhan B, Dikshit A, ... Alamri AM (2021) Spatial assessment of drought vulnerability using fuzzy-analytical hierarchical process: a case study at the Indian state of Odisha. Geomat Nat Haz Risk 12(1):123–153‏

  • Shamohammadi Z, Maleki S (2011) The life of Hamun, Iran

  • Small D, Schubert A (2008) Guide to ASAR Geocoding, RSL-ASAR-GC-AD, Issue 1.0, March

  • Swain PH, Davis SM (1978) Remote Sensing: The quantitative approach. McGraw-Hill, New York

  • Touzi R, Deschamp B, Rother G (2007) Wetland characterization using polarimetric RADARSAT-2 capability. Can J Remote Sens 33(1):56–67

    Article  Google Scholar 

  • Toyra J, Pietroniro A (2005) Towards operational monitoring of a northern wetland using geomatics-based techniques. Remote Sens Environ 97:174–191

    Article  Google Scholar 

  • UNEP (2002) Sistan oasis parched by drought. In: /DEWP/GRID-Geneva U (ed). 11–21

  • Vicca S, Balzarolo M, Filella I, Granier A, Herbst M, Knohl A et al (2016) Remotely-sensed detection of effects of extreme droughts on gross primary production. Sci Rep 6:28269

    Article  Google Scholar 

  • Wang H, Ge Q, Dai J, Mao Z (2015) Geographical pattern in first bloom variability and its relation to temperature sensitivity in the USA and China. Int J Biometeorol 59:961–969

  • White D, Fennessy MS (2005) Modeling the suitability of wetland restoration potential at the watershed scale. Ecol Eng 24:359–377

    Article  Google Scholar 

  • Wilusz A, Zaitchik B, Anderson M, Hain C, Yilmaz M (2017) Monthly flooded area classification using low resolution SAR imagery in the Sudd wetland from 2007 to 2011. Remote Sens Environ 194:205–218

    Article  Google Scholar 

  • Yadav V, Ghosh SK (2019). Assessment and prediction of urban growth for a mega-city using CA-Markov model. Geocarto Int 1–33.‏

  • Ye L, Grimm NB (2013) Modelling potential impacts of climate change on water and nitrate export from a mid-sized, semiarid watershed in the US Southwest. Clim Change 120:419–431

    Article  Google Scholar 

  • Zhao A, Zhu X, Liu X, Pan Y, Zuo D (2016) Impacts of land use change and climate variability on green and blue water resources in the Weihe River Basin of northwest China. CATENA 137:318–327

    Article  Google Scholar 

  • Zhang Y, Zhang S, Xia J, Hua D (2013) Temporal and spatial variation of themain water balance components in the three rivers source region, China from 1960 to 2000. Environ Earth Sci 64:973–983

    Article  Google Scholar 

Download references

Funding

This paper was supported by University of Zabol (grant code: UOZ-GR-1348).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeideh Maleki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest with respect to this study and publication.

Additional information

Responsible Editor: Biswajeet Pradhan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleki, S., Rahdari, V. & Soffianain, A. Drought impact detection on wetlands in the arid area using Synthetic Aperture Radar data. Arab J Geosci 15, 919 (2022). https://doi.org/10.1007/s12517-022-10171-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-10171-w

Keywords

Navigation