Skip to main content
Log in

Mechanical behavior of bio-cemented silty sand

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

This paper presents results of a series of direct shear box tests conducted on Chlef sand treated with biopolymer. The first laboratory tests set was performed on specimens of untreated and treated natural sand with different xanthan gum contents (XG = 0; 0.25; 0.5; and 1%) prepared at a curing period of 7 days under three different normal stresses 50, 100 and 200 kPa in order to analyze the effect of xanthan gum content on bio-cemented sand. The second set was performed on untreated and treated clean sand with different fines fractions at a xanthan gum content of XG = 0.25% by mass to study the effect of fines fraction on the mechanical behavior of xanthan gum treated sand. Test results showed that the addition of xanthan gum improved the shear strength parameters of sand up to four times for the higher xanthan gum contents, and a significant increase in the shear strength and cohesion value is obtained by adding small percentages of xanthan gum. Shear strength characteristics of bio-cemented sand-fines mixture show that an increment in fines fraction increases the maximum shear strength and friction angle values. Furthermore, the cohesion of treated sand-fines mixtures increased by 12, 21, and 32 times at fines contents of 10, 20, and 30%. In addition, the contractive behavior of sand-fines mixtures changes into a dilative behavior with the addition of a small content of xanthan gum XG = 0.25%. However, the introduction of xanthan gum into the soil matrix increased the brittleness index of Chlef sand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

D50:

Medium grain size

Dmax:

Maximum diameter

Cu:

Coefficient of uniformity

Cc:

Coefficient of curvature

G:

Mean specific gravity

Gs :

Specific gravity of sand

Gf :

Specific gravity of fines

Emax:

Maximum void ratio

Emin:

Minimum void ratio

XG:

Xanthan gum content

Fc:

Fines content

Fct :

Threshold fines content

Σ:

Normal stress

Dr:

Relative density

τ:

Shear strength

ΔH:

Horizontal displacement

ΔV:

Vertical displacement

τmax :

Maximum shear strength

τmaxUT :

Maximum shear strength of untreated samples

τmaxT :

Maximum shear strength treated samples

τres :

Residual shear strength

Sr:

Strength ratio

References

  • Amini F, Qi GZ (2000) Liquefaction testing of stratified silty sands. J Geotech Geoenviron Eng 126(3):208–217

    Article  Google Scholar 

  • Aouali N, Benessalah I, Arab A, Ali B, Abed M (2019) Shear strength response of fibre reinforced Chlef (Algeria) silty sand: laboratory study. Geotech Geol Eng 37(2):1047–1057

    Article  Google Scholar 

  • Arab A (2009) Comportement monotone et cyclique d’un sable limoneux. Comptes Rendus Mécanique 337(8):621–631

    Article  Google Scholar 

  • Ayeldeen MK, Negm AM, El Sawwaf MA (2016) Evaluating the physical characteristics of biopolymer/soil mixtures. Arab J Geosci 9(5):371

    Article  Google Scholar 

  • Ayeldeen M, Negm A, El-Sawwaf M, Kitazume M (2017) Enhancing mechanical behaviors of collapsible soil using two biopolymers. J Rock Mech Geotech Eng 9(2):329–339

    Article  Google Scholar 

  • Belkhatir M, Arab A, Della N, Missoum H, Schanz T (2010) Liquefaction resistance of Chlef river silty sand: effect of low plastic fines and other parameters. Acta PolytechnicaHungarica 7(2):119–137

    Google Scholar 

  • Belkhatir M, Arab A, Della N, Schanz T (2012) Experimental study of undrained shear strength of silty sand: effect of fines and gradation. Geotech Geol Eng 30(5):1103–1118

    Article  Google Scholar 

  • Benahmed N, Nguyen TK, Hicher PY, Nicolas M (2015) An experimental investigation into the effects of low plastic fines content on the behavior of sand/silt mixtures. Eur J Environ Civ Eng 19(1):109–128

    Article  Google Scholar 

  • Benziane MM, Della N, Denine S, Sert S, Nouri S (2019) Effect of randomly distributed polypropylene fiber reinforcement on the shear behavior of sandy soil. StudiaGeotechnicaetMechanica 41(3):151–159

    Google Scholar 

  • Benziane M. M. Della N. Sert S. Denine S. Nouri S. Bol E. & Elroul A. B. (2021). Shear behaviour of sandy soil from Chlef river reinforced with different types of fibres. Marine Georesources & Geotechnology, 1–11.

  • Bouferra R, Shahrour I (2004) Influence of fines on the resistance to liquefaction of a clayey sand. Proc Inst Civil Eng-Ground Improv 8(1):1–5

    Article  Google Scholar 

  • Bozyigit I, Javadi A, Altun S (2021) Strength properties of xanthan gum and guar gum treated kaolin at different water contents. J Rock Mech Geotech Eng 13(5):1160–1172

    Article  Google Scholar 

  • Cabalar AF, Canakci H (2011) Direct shear tests on sand treated with xanthan gum. Proc Inst Civil Eng-Ground Improv 164(2):57–64

    Article  Google Scholar 

  • Cabalar AF, Demir S (2020) Fall-cone testing of different size/shape sands treated with a biopolymer. Geomech Eng 22(5):441–448

    Google Scholar 

  • Cabalar AF, Hasan RA (2013) Compressional behavior of various size/shape sand–clay mixtures with different pore fluids. Eng Geol 164:36–49

    Article  Google Scholar 

  • Cabalar AF, Wiszniewski M, Skutnik Z (2017) Effects of xanthan gum biopolymer on the permeability, odometer, unconfined compressive and triaxial shear behavior of a sand. Soil Mech Found Eng 54(5):356–361

    Article  Google Scholar 

  • Cabalar AF, Awraheem MH, Khalaf MM (2018a) Geotechnical properties of a low-plasticity clay with biopolymer. J Mater Civ Eng 30(8):04018170

    Article  Google Scholar 

  • Cabalar AF, Karabash Z, Erkmen O (2018b) Stiffness of a biocemented sand at small strains. Eur J Environ Civ Eng 22(10):1238–1256

    Article  Google Scholar 

  • Cabalar AF, Demir S, Khalaf MM (2019) Liquefaction resistance of different size/shape sand-clay mixtures using a pair of bender element–mounted molds. J Test Eval 49(1):509–524

    Google Scholar 

  • Chang I, Cho GC (2012) Strengthening of Korean residual soil with _-1,3/1,6-glucan biopolymer. Constr Build Mater 30:30–35

    Article  Google Scholar 

  • Chang NY, Yeh ST, Kaufman LP (1982) June). Liquefaction potential of clean and silty sands. In Proc third intern earthq microzonation conf 2:1017–1032

    Google Scholar 

  • Chang I, Im J, Prasidhi AK, Cho GC (2015a) Effects of xanthan gum biopolymer on soil strengthening. Constr Build Mater 74:65–72

    Article  Google Scholar 

  • Chang I, Prasidhi AK, Im J, Cho GC (2015b) Soil strengthening using thermo-gelation biopolymers. Constr Build Mater 77:430–438

    Article  Google Scholar 

  • Chang I, Im J, Cho GC (2016) Geotechnical engineering behaviors of gellan gum biopolymer treated sand. Can Geotech J 53(10):1658–1670

    Article  Google Scholar 

  • CherifTaiba A, Belkhatir M, Kadri A, Mahmoudi Y, Schanz T (2016) Insight into the effect of granulometric characteristics on the static liquefaction susceptibility of silty sand soils. Geotech Geol Eng 34(1):367–382

    Article  Google Scholar 

  • Consoli N. C. Prietto P. D. &Ulbrich L. A. (1998). Influence of fiber and cement addition on behavior of sandy soil. Journal of geotechnical and geoenvironmental engineering124(12), 1211–1214.Krim et al. (2013)

  • Della N, Arab A, Belkhatir M, Missoum H (2009) Identification of the behavior of the Chlef sand to static liquefaction. Comptes Rendus Mécanique 337(5):282–290

    Article  Google Scholar 

  • Denine S, Della N, Dlawar MR, Sadok F, Canou J, Dupla JC (2016) Effect of geotextile reinforcement on shear strength of sandy soil: laboratory study. StudiaGeotechnicaetMechanica 38(4):3–13

    Google Scholar 

  • Finn W. D. Ledbetter R. H. & Wu G. (1994, October). Liquefaction in silty soils: design and analysis. In Ground failures under seismic conditions (pp. 51–76). ASCE.

  • Holtz RD, Kovacs WD (1981) An introduction to geotechnical engineering. Prentice Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • Ishihara K & Takatsu H (1979) « Effects of oversurconsolidation and K0 conditions the liquefaction characteristics of sands», Soils and Foundations, Tokyo, Japon, pp.59–68.

  • Jradi L. (2018). Study of the influence of fine particles on the properties of liquefaction of sands [Ph.D thesis]. University Paris-Est.

  • Koester J. P. (1994, October). The influence of fines type and content on cyclic strength. In Ground failures under seismic conditions (pp. 17–33). ASCE.

  • Latifi N, Horpibulsuk S, Meehan CL, Abd Majid MZ, Rashid ASA (2016) Xanthan gum biopolymer: an eco-friendly additive for stabilization of tropical organic peat. Environ Earth Sci 75(9):825

    Article  Google Scholar 

  • Law K. T. & Ling Y. H. (1992). Liquefaction of granular soils with non-cohesive and cohesive fines. In Proceedings of the 10th world conference on earthquake engineering, Rotterdam (pp. 1491–1496).

  • Lee S, Chang I, Chung MK, Kim Y, Kee J (2017) Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing. Geomech Eng 12(5):831–847

    Article  Google Scholar 

  • Lee S, Im J, Cho GC, Chang I (2019) Tri-axial shear behavior of xanthan gum biopolymer-treated sand. Geo-Congress 2019: Soil Improvement. American Society of Civil Engineers, Reston, VA, pp 179–186

    Chapter  Google Scholar 

  • Monkul MM, Ozden G (2007) Compressional behavior of clayey sand and transition fines content. Eng Geol 89(3–4):195–205

    Article  Google Scholar 

  • Ni QTST, Tan TS, Dasari GR, Hight DW (2004) Contribution of fines to the compressive strength of mixed soils. Géotechnique 54(9):561–569

    Article  Google Scholar 

  • Sawant A. Patil A. Thonge R. Trankatwar V. &Banne S. Effect of xanthan gum on shear strength parameters of laterite soil in Konkan region.

  • Seed, R. B., & Harder (1990). SPT-based analysis of cyclic pore pressure and undrained residual soil strength. In Proc., H. Boldon Seed Memorial Symp., University of California, Berkeley (Vol. 2, pp. 351–376).

  • Standard test methods for maximum index density and unit weight of soils using a vibratory table. West Conshohocken, PA: ASTM International.

  • Standard test methods for minimum index density and unit weight of soils and calculation of relative density. West Conshohoken, PA: ASTM International.

  • Standard test methods for particle-size analysis of soils. West Conshohoken, PA: ASTM International.

  • Standard test methods for specific gravity of soil solids by water pycnometer. West Conshohocken, PA: ASTM International.

  • C.K. Shen, J.L. Vrymoed C.K. Uyeno (1997, Tokyo). The effects of fines on liquefaction of sands, in: Proceedings of the 9th International Conference on Soil Mech. and Foundation Eng 2 381–385

  • Thevanayagam S (1998) Effect of fines and confining stress on undrained shear strength of silty sands. J Geotech Geoenviron Eng 124(6):479–491

    Article  Google Scholar 

  • Throncoso J, Verdugo R (1985) Silt content and dynamic behavior of tailing sands. In Int conf soil mech foundation eng. 11:1311–1314

    Google Scholar 

  • Vaid Y. P. (1994, October). Liquefaction of silty soils. In Ground failures under seismic conditions (pp. 1–16). ASCE.

  • Yamamuro JA, Lade PV (1997) Static liquefaction of very loose sands. Can Geotech J 34(6):905–917

    Article  Google Scholar 

  • Zhang MX, Javadi AA, Min X (2006) Triaxial tests of sand reinforced with 3D inclusions. Geotext Geomembr 24(4):201–209

    Article  Google Scholar 

  • Zhu Z. Dupla J. C. Canou J. &Foerster E. (2020). Experimental study of liquefaction resistance: effect of non-plastic silt content on sand matrix. European Journal of Environmental and Civil Engineering, 1–19.

  • Zlatovic S, Ishihara K (1997) Normalized behavior of very loose non-plastic soils: effects of fabric. Soils Found 37(4):47–56

    Article  Google Scholar 

Download references

Acknowledgements

All tests were carried out in the Laboratory of Material Sciences & Environment at Hassiba Benbouali of Chlef, Algeria. The writers acknowledge the technicians who contributed to this experimental program.

Funding

The authors are grateful for the financial support received from the Directorate General for Scientific Research and Technological Development (DGRSDT), Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureddine Della.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Zeynal Abiddin Erguler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Missoum Benziane, M., Della, N., Bedr, S. et al. Mechanical behavior of bio-cemented silty sand. Arab J Geosci 15, 577 (2022). https://doi.org/10.1007/s12517-022-09776-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-09776-y

Keywords

Navigation