Skip to main content
Log in

Organic geochemical characteristics of shale in the lower sub-member of the third member of Paleogene Shahejie Formation (Es3L) in Zhanhua Sag, Bohai Bay Basin, eastern China: significance for the shale oil-bearing evaluation and sedimentary environment

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Organic geochemical compositions of shale are the key parameters for evaluating the potential of lacustrine shale oil. Systematic organic geochemical analyses (e.g., total organic carbon (TOC), Rock–Eval pyrolysis, chloroform bitumen “A,” group component, kerogen maceral, and saturated hydrocarbon chromatography) have been carried out on the shale in the lower sub-member of the third member of Eocene Shahejie Formation (Es3L) in the Well L69 from the Zhanhua Sag of Bohai Bay Basin, in order to constrain its sedimentary environment and evaluate the potential of lacustrine shale oil. The shale in the Es3L has TOC content in the range from 0.52% to 9.32%, free hydrocarbon (S1) from 0.03 mg/g to 13.12 mg/g, thermally-cracked hydrocarbon (S2) from 1.19 mg/g to 78.59 mg/g, hydrocarbon generation potential (S1 + S2) from 1.77 mg/g to 82.65 mg/g, chloroform bitumen “A” from 0.2515% to 2.1422%, and total hydrocarbon (HC) from 1630 μg/g to 10,500 μg/g, respectively. The kerogen is mainly composed of type I and type II1 sapropel, whereas the parent material is dominated by lower aquatic organisms. The original total organic carbon (TOCo), oil saturation index (OSI), and total oil (S’) vary from 1.23% to 11.33%, 3 mg oil/g TOC to 258 mg oil/g TOC, and 21.98 bbl oil/ac-ft to 980.38 bbl oil/ac-ft, respectively. The aforementioned organic geochemical compositions indicate that shale in the Es3L is characterized by high organic matter abundance, high paleoproductivity, and good organic matter type, with early maturation to peak maturation. The characteristics of saturated hydrocarbon chromatography indicate that the lake evolved from strong reducing brackish-saline water to weak reducing-weak oxidizing fresh water in the sedimentary period of Es3L in the Zhanhua Sag, providing favorable conditions for high accumulation and preservation of original organic matter. Comprehensive evaluation from these organic geochemical compositions suggests that the 3061–2983 m interval in the Well L69 has high oil content and good potential to further explore the shale oil. This provides good implications for the optimization of favorable intervals for shale oil exploration in the Bohai Bay Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Affouri H, Montacer M (2014) Organic matter appraisal of the Lower Eocene (Ypresian) Bou Dabbous Formation in Tunisia. Arab J Geosci 7(12):5509–5542. https://doi.org/10.1007/s12517-013-1197-6

    Article  Google Scholar 

  • Badics B, Vető I (2012) Source rocks and petroleum systems in the Hungarian part of the Pannonian Basin: the potential for shale gas and shale oil plays. Mar Petrol Geol 31(1):53–69. https://doi.org/10.1016/j.marpetgeo.2011.08.015

    Article  Google Scholar 

  • Behar F, Beaumont V, De Pentedo HLB (2001) Rock-Eval 6 technology: performances and developments. Oil Gas Sci Technol 56(02):111–134. https://doi.org/10.2516/ogst:2001013

    Article  Google Scholar 

  • Bourbonniere RA, Meyers PA (1996) Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnol Oceanogr 41(02):352–359

    Article  Google Scholar 

  • Bowker KA (2007) Barnett Shale gas production, Fort Worth Basin: issues and discussion. AAPG Bull 91(4):523–533

    Article  Google Scholar 

  • Carvajal-Ortiz H, Gentzis T (2015) Critical considerations when assessing hydrocarbon plays using Rock-Eval pyrolysis and organic petrology data: Data quality revisited. Int J Coal Geol 152:113–122. https://doi.org/10.1016/j.coal.2015.06.001

    Article  Google Scholar 

  • Chen J, Qin Y, Huff B, Wang D, Han D, Huang D (2001) Geochemical evidence for mudstone as the possible major oil source rock in the Jurassic Turpan Basin, Northwest China. Org Geochem 32:1103–1125. https://doi.org/10.1016/S0146-6380(01)00076-6

    Article  Google Scholar 

  • Chen Z, Za M, Jin Q (2004) An investigation on generation and expulsion of hydrocarbon from source rocks of the Shahejie formation in the well Niu-38. Dongying Depression Chinese J Geo 39(03):356–366 ((in Chinese with English abstract))

    Google Scholar 

  • Durand B, Alpern B, Pittion J L, Pradier B (1986) Reflectance of vitrinite as a control of thermal history of sediments[M]//BURRUS J. Thermal modeling in sedimentary basins. Paris: Editions Technip 1986:441–474

  • El-Habaak G, Khalaphallah R, Hassan M, Askalany M, Abdel-Hakeem M (2020) Characterization and exploitation of black shale as unconventional source of biohydrogen: a case study from the Abu-Tartur mine, Western Desert. Egypt Arab J Geosci 13(12):467. https://doi.org/10.1007/s12517-020-05482-9

    Article  Google Scholar 

  • Espitalie J, Deroo G, Marquis F (1985) La pyrolyse Rock-Eval et ses applications. Deuxième partie. Rock-Eval pyrolysis and its applications (part two). Revue de Institut Français du Pétrole, 40(6): 755–784. https://doi.org/10.2516/ogst:1985045.

  • Fu X, Wang J, Wang Z, Chen W (2007) Biomarkers and sedimentary environment of Late Jurassic marine oil shale in Qiangtang basin, northern Xizang and its geological significance. Geochimica 36(05):486–496 ((in Chinese with English abstract))

    Google Scholar 

  • Hazra B, Varma AK, Bandopadhyay AK, Chakravarty S, Buragohain J, Samad SK, Prasad AK (2016) FTIR, XRF, XRD and SEM characteristics of Permian shales, India. J Nat Gas Sci Eng 32:239–255. https://doi.org/10.1016/j.jngse.2016.03.098

    Article  Google Scholar 

  • Hazra B, Dutta S, Kumar S (2017) TOC calculation of organic matter rich sediments using Rock-Eval pyrolysis: critical consideration and insights. Int J Coal Geol 169:106–115. https://doi.org/10.1016/j.coal.2016.11.012

    Article  Google Scholar 

  • Hazra B, Karacan CÖ, Tiwari DM, Singh PK, Singh AK (2019) Insights from Rock-Eval analysis on the influence of sample weight on hydrocarbon generation from Lower Permian organic matter rich rocks, West Bokaro basin, India. Mar Petrol Geol 106:160–170. https://doi.org/10.1016/j.marpetgeo.2019.05.006

    Article  Google Scholar 

  • Hazra B, Wood DA, Singh PK, Singh AK, Kumar OP, Raghuvanshi G, Singh DP, Chakraborty P, Rao PS, Mahanta K, Sahu G (2020) Source rock properties and pore structural framework of the gas-prone Lower Permian shales in the Jharia basin. India Arab J Geosci 13(13):507. https://doi.org/10.1007/s12517-020-05515-3

    Article  Google Scholar 

  • Hazra B, Singh DP, Crosdale PJ, Singh V, Singh PK, Gangopadhyay M, Chakraborty P (2021) Critical insights from Rock-Eval analysis of vitrains. Int J Coal Geol 238:103717. https://doi.org/10.1016/j.coal.2021.103717

    Article  Google Scholar 

  • Hazra B, Singh DP, Chakraborty PJ, Singh PK, Sahu SG, Adak AK (2021b) Using rock-eval S4Tpeak as thermal maturity proxy for shales. Mar Petrol Geol 127:104977. https://doi.org/10.1021/acs.energyfuels.0c03412

    Article  Google Scholar 

  • Hazra B, Vishal V, Singh DP (2021) Applicability of low-pressure CO2 and N2 adsorption in determining pore attributes of organic-rich shales and coals. Energ Fuel 35(1):456–464. https://doi.org/10.1021/acs.energyfuels.0c03412

    Article  Google Scholar 

  • He T, Li W, Tan Z, Wang Y, Zhang W, Zhang X (2019) Mechanism of shale oil accumulation in the Hetaoyuan Formation from the Biyang Depression,Nanxiang Basin. Oil & Gas Geology, 40(06): 1259–1269. https://doi.org/10.11743/ogg20190610 (in Chinese with English abstract).

  • Inan S, Henderson S, Qathami S (2017) Oxidation Tmax: a new thermal maturity indicator for hydrocarbon source rocks. Org Geochem 113:254–261. https://doi.org/10.1016/j.orggeochem.2017.08.011

    Article  Google Scholar 

  • Jarvie D (2014) Components and processes affecting producibility and commerciality of shale resource systems. Geol Acta 12(4):307–325

    Google Scholar 

  • Jarvie D, MLundell LL (2001) Kerogen type and thermal transformation of organic matter in the Miocene Monterey Formation. Isaacs C M1Rullkotter J, The Monterey Formation: From Rocks to Molecules. Columbia University Press, New York, pp 268–295

    Google Scholar 

  • Jarvie DM, Hill RJ, Ruble TE, Pollastro RM (2007) Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull 91(4):475–499. https://doi.org/10.1306/12190606068

    Article  Google Scholar 

  • Jia C, Zheng M, Zhang R (2012) Unconventional hydrocarbon resources in China and the prospect of exploration and development. Petrol Explor Dev 39(2):129–136 ((in Chinese with English abstract))

    Article  Google Scholar 

  • Jiu K, Ding WL, Huang WH, Zhang Y, Zhao S (2013) Fractures of lacustrine shale reservoirs, the Zhanhua Depression in the Bohai Bay Basin, eastern China. Mar Petrol Geol 48:113–123. https://doi.org/10.1016/j.marpetgeo.2013.08.009

    Article  Google Scholar 

  • Katz BJ (1983) Limitations of ‘Rock-Eval’ pyrolysis for typing organic matter. Org Geochem 4(3):195–199. https://doi.org/10.1016/0146-6380(83)90041-4

    Article  Google Scholar 

  • Kinley TJ, Cook LW, Breyer JA, Jarvie DM, Busbey AB (2008) Hydrocarbon potential of the Barnett Shale (Mississippian), Delaware Basin, west Texas and southeastern New Mexico. AAPG Bull 92(8):967–991. https://doi.org/10.1306/03240807121

    Article  Google Scholar 

  • Lafargue E, Marquis F, Pillot D (1998) Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies//REVIEW. Institut Français du Pétrole.

  • Li S, Suo Y, Sai L, Liu L, Jin C, Liu X, Hao T, Zhou L, Liu B, Zhou J, Jiao Q (2010) Development of the Bohai Bay Basin and destruction of the North China Craton. Earth Sci Front 17(04):64–89

    Google Scholar 

  • Li L, Wang Z, Zheng Y, Cheng F, Wu S, Qi Z, Liu A (2019a) Mechanism of shale oil enrichment from the salt cyclothem in Qian3 member of Qianjiang Sag. Jianghan Basin Earth Sci 44(03):1012–1023. https://doi.org/10.3799/dqkx.2018.389 ((in Chinese with English abstract))

    Article  Google Scholar 

  • Li Z, Tao G, Li M, Jiang Q, Cao T, Liu P, Qian M, Xie X, Li Z (2019) Favorable interval for shale oil prospecting in coring Well L69 in the Paleogene Es 3L in Zhanhua Sag,Jiyang Depression,Bohai Bay Basin. Oil & Gas Geology 40(02):236–247. https://doi.org/10.11743/ogg2019b0203 ((in Chinese with English abstract))

    Article  Google Scholar 

  • Li C, Pang X, Huo Z, Wang E, Xue N (2020) A revised method for reconstructing the hydrocarbon generation and expulsion history and evaluating the hydrocarbon resource potential: example from the first member of the Qingshankou Formation in the Northern Songliao Basin. Northeast China Mar Petrol Geol 121:104577. https://doi.org/10.1016/j.marpetgeo.2020.104577

    Article  Google Scholar 

  • Lin J, Hao F, Hu H, Tian J, Duan W (2015) Depositional environment and controlling factors of source rock in the Shahejie formation of Langgu sag. Acta Petrolei Sinica 36(02):163–173. https://doi.org/10.7623/syxb201502004 ((in Chinese with English abstract))

    Article  Google Scholar 

  • Liu B, Shi J, Fu X, Liu F, Sun X, Gong L, Bai Y (2018) Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: a case study of organic-rich shale in first member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China. Petrol Explor Dev 45(05):828–838. https://doi.org/10.11698/PED.2018.05.08 ((in Chinese with English abstract))

    Article  Google Scholar 

  • Ma Y, Fan M, Lu Y, Liu H, Hao Y, Xie Z, Liu Z, Peng L, Du X, Hu H (2016) Climate-driven paleolimnological change controls lacustrine mudstone depositional process and organic matter accumulation: constraints from lithofacies and geochemical studies in the Zhanhua Depression, eastern China. Int J Coal Geol 167:103–118. https://doi.org/10.1016/j.coal.2016.09.014

    Article  Google Scholar 

  • Ma Y, Liu H, Zhang S, Lu Y, Liu X (2020) Types of fine-grained mixed sedimentary rocks of Shahejie Formation and Evolution of Lake Basin in Jiyang Depression, eastern China. Earth Sci 45(10):3633–3644. https://doi.org/10.3799/dqkx.2020.192 ((in Chinese with English abstract))

    Article  Google Scholar 

  • Moldowan JM, Sundararaman P, Schoell M (1986) Sensitivity of biomarker properties to depositional environment and/or source input in the Lower Toarcian of SW-Germany. Org Geochem 10(4–6):915–926. https://doi.org/10.1016/S0146-6380(86)80029-8

    Article  Google Scholar 

  • Nytoft HP, Fyhn MBW, Hovikoski J, Rizzi M, Abatzis I, Tuan HA, Tung NT, Huyen NT, Cuong TX, Nielsen LH (2020) Biomarkers of Oligocene lacustrine source rocks, Beibuwan-Song Hong basin junction, offshore northern Vietnam. Mar Petrol Geol 114:104196. https://doi.org/10.1016/j.marpetgeo.2019.104196

    Article  Google Scholar 

  • Pang X, Li M, Li S, Jin Z (2005) Geochemistry of petroleum systems in the Niuzhuang South Slope of Bohai Bay Basin: part 3. Estimating hydrocarbon expulsion from the Shahejie formation. Org Geochem 36(4):497–510. https://doi.org/10.1016/j.orggeochem.2004.12.001

    Article  Google Scholar 

  • Peters K E (1986) Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG BULL 70(3)

  • Peters K, Fraser T, Amris W, Rustanto B, Hermanto E (1999) Geochemistry of crude oils from eastern Indonesia. AAPG Bull 83:1927–1942. https://doi.org/10.1111/jpg.12663

    Article  Google Scholar 

  • Powell TG (1986) Petroleum geochemistry and depositional setting of lacustrine source rocks. Mar Petrol Geol 3(3):200–219. https://doi.org/10.1016/0264-8172(86)90045-0

    Article  Google Scholar 

  • Romero-Sarmiento M, Pillot D, Letort G, Lamoureux-Var V, Beaumont V, Huc A, Garcia B (2016) New Rock-Eval method for characterization of unconventional shale resource systems. IFP Energies nouvelles.

  • Ross DJK, Bustin RM (2008) Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada sedimentary basin: application of an integrated formation evaluation. AAPG Bull 92(1):87–125

    Article  Google Scholar 

  • Sanei H, Petersen HI, Schovsbo NH, Jiang C, Goodsite ME (2014) Petrographic and geochemical composition of kerogen in the Furongian (U. Cambrian) Alum Shale, central Sweden: reflections on the petroleum generation potential. Int J Coal Geol 132:158–169. https://doi.org/10.1016/j.coal.2014.08.010

    Article  Google Scholar 

  • Schoepfer SD, Shen J, Wei H, Tyson RV, Ingall E, Algeo TJ (2015) Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity. Earth-Sci Rev 149:23–52. https://doi.org/10.1016/j.earscirev.2014.08.017

    Article  Google Scholar 

  • Seifert WK, Moldowan JM (1981) Paleoreconstruction by biological markers. Geochim Cosmochim Ac 45(6):783–794. https://doi.org/10.1016/0016-7037(81)90108-3

    Article  Google Scholar 

  • Singh DP, Chandra D, Vishal V, Hazra B, Sarkar P (2021a) Impact of degassing time and temperature on the estimation of pore attributes in shale. Energ Fuel 35(19):15628–15641. https://doi.org/10.1021/acs.energyfuels.1c02201

    Article  Google Scholar 

  • Singh DP, Hazra B, Wood DA, Singh PK (2021b) Hydrocarbon generation and kinetics: a case study of Permian shales. India J Asian Earth Sci 222:104960. https://doi.org/10.1016/j.jseaes.2021.104960

    Article  Google Scholar 

  • Singh DP, Singh V, Singh PK, Hazra B (2021c) Source rock properties and pore structural features of distinct thermally mature Permian shales from South Rewa and Jharia basins. India Arab J Geosci 14(10):916. https://doi.org/10.1007/s12517-021-07278-x

    Article  Google Scholar 

  • Song M, Liu H, Wang Y, Liu Y (2020) Enrichment rules and exploration practices of Paleogene shale oil in Jiyang Depression, Bohai Bay Basin, China. Petrol Explor Dev 47(02):225–235. https://doi.org/10.11698/PED.2020.02.02 ((in Chinese with English abstract))

    Article  Google Scholar 

  • Tian T, Qi M, Lu Z, Feng M, Liu Y (2017) Study on microscopic reservoir characteristics of shale oil from Shahejie formation in Zhanhua Sag, Bohai Bay Basin, China. Journal of Chengdu University of Technology (science & Technology Edition) 44(05):535–542. https://doi.org/10.3969/j.issn.1671-9727 ((in Chinese with English abstract))

    Article  Google Scholar 

  • Tissot BP, Welte DH (1984) Petroleum formation and occurrence. Springer-Verlag, Second Revised and Enlarged Edition. Berlin Heidelberg NewYork Tokyo

    Book  Google Scholar 

  • Uffmann AK, Littke R, Rippen D (2012) Mineralogy and geochemistry of Mississippian and Lower Pennsylvanian Black Shales at the Northern Margin of the Variscan Mountain Belt (Germany and Belgium). Int J Coal Geol 103:92–108. https://doi.org/10.1016/j.coal.2012.08.001

    Article  Google Scholar 

  • Van Krevelen DW (1984) Organic geochemistry—old and new. Org Geochem 6:1–10. https://doi.org/10.1016/0146-6380(84)90021-4

    Article  Google Scholar 

  • Varma AK, Hazra B, Mendhe VA, Chinara I, Dayal AM (2015) Assessment of organic richness and hydrocarbon generation potential of Raniganj basin shales, West Bengal, India. Mar Petrol Geol 59:480–490. https://doi.org/10.1016/j.marpetgeo.2014.10.003

    Article  Google Scholar 

  • Varma AK, Biswas S, Patil DJ, Mani D, Misra S, Hazra B (2019) Significance of lithotypes for hydrocarbon generation and storage. Fuel 235:396–405. https://doi.org/10.1016/j.fuel.2018.07.111

    Article  Google Scholar 

  • Wang T, Zhong N, Hou D, Huang G, Bao J, Li X (1995) Formation and distribution of low maturity oil and gas. Petroleum Industry Press, Beijing ((in Chinese))

    Google Scholar 

  • Wang M, Wilkins RWT, Song GQ, Zhang LY, Xu XY, Li Z, Chen GH (2015) Geochemical and geological characteristics of the Es3(L) lacustrine shale in the Bonan sag, Bohai Bay Basin, China. Int J Coal Geol 138:16–29. https://doi.org/10.1016/j.coal.2014.12.007

    Article  Google Scholar 

  • Wang Y, Wang X, Song G, Liu H, Zhu D, Zhu D, Ding J, Yang W, Yin Y, Zhang S, Wang M (2016) Genetic connection between mud shale lithofacies and shale oil enrichment in Jiyang Depression, Bohai Bay Basin. Petrol Explor Dev 43(05):696–704. https://doi.org/10.11698/PED.2016.05.04 ((in Chinese with English abstract))

    Article  Google Scholar 

  • Wood DA, Hazra B (2017) Characterization of organic-rich shales for petroleum exploration & exploitation: a review part 2: geochemistry, thermal maturity, isotopes and biomarkers. J Earth Sci 28(5):758–778. https://doi.org/10.1007/s12583-017-0733-9

    Article  Google Scholar 

  • Wu L, Gu X, Sheng Z, Fan C, Tong Z, Cheng K (1986) Rapid and quantitative evaluation of source Rock-Eval pyrolysis. Science Press, Benjing ((in Chinese))

    Google Scholar 

  • Yang Y, Huang D (2019) Geological characteristics and new understandings of exploration and development of Jurassic lacustrine shale oil and gas in the Sichuan Basin. Nat Gas Ind 39(06):22–33. https://doi.org/10.3787/j.issn.1000-0976.2019.06.003 ((in Chinese with English abstract))

    Article  Google Scholar 

  • Yang H, Niu X, Xu L, Feng S, You Y, Liang X, Wang F, Zhang D (2016) Exploration potential of shale oil in Chang7 Member, Upper Triassic Yanchang Formation, Ordos Basin, NW China. Petrol Explor Dev 43(04):511–520. https://doi.org/10.11698/PED.2016.04.02 ((in Chinese with English abstract))

    Article  Google Scholar 

  • Yang Z, Zou C, Wu S, Pan S, Wang L, Pang Z, Lin S, Li J (2021) From source control theory to source-reservoir symbiosis system: on the theoretical understanding and practice of source rock strata oil and gas geology in China. Acta Geol 95(03):618–631. https://doi.org/10.19762/j.cnki.dizhixuebao.2021136 ((in Chinese with English abstract))

    Article  Google Scholar 

  • Zhang X, Zhuang X, TU Q, Xu S, Zhang Y (2018) Depositional process and mechanism of organic matter accumulation of Lucaogou shale in Southern Junggar Basin. Northwest China Earth Sci 43(02):538–550. https://doi.org/10.3799/dqkx.2017.603 ((in Chinese with English abstract))

    Article  Google Scholar 

  • Zhang L, Lun Z, Wang J, Tian T, Wang X (2016) Microscopic pore structure of shale oil reservoirs in the Lower 3 rd Member of Shahejie Formation in Zhanhua Sag,Bohai Bay Basin. Oil & Gas Geology, 37(01): 80–86. https://doi.org/10.11743/ogg20160111 (in Chinese with English abstract).

  • Zhao X, Zhou L, Pu X, Jin F, Han W, Xiao D, Chen S, Shi Z, Zhang W, Yang F (2018) Geological characteristics of shale rock system and shale oil exploration breakthrough in a lacustrine basin: a case study from the Paleogene 1st sub- member of Kong 2 Member in Cangdong sag, Bohai Bay Basin, China. Petrol Explor Dev 33(03):361–372. https://doi.org/10.11698/PED.2018.03.01 ((in Chinese with English abstract))

    Article  Google Scholar 

  • Zhao Z, Hou D, Cheng X, Xu H, Ma C, Zhou X, Xu C (2021) Geochemical and palynological characteristics of the Paleogene source rocks in the Northeastern Laizhouwan Sag, Bohai Bay Basin, China: hydrocarbon potential, depositional environment, and factors controlling organic matter enrichment. Mar Petrol Geol 124:104792. https://doi.org/10.1016/j.marpetgeo.2020.104792

    Article  Google Scholar 

  • Zhu R, Zhang L, Li J, Liu Q, LI Z, Wang R, Zhang L (2015) Quantitative evaluation of residual liquid hydrocarbons in shale. Acta Petrolei Sinica 36(01):13–18. https://doi.org/10.7623/syxb201501002 ((in Chinese with English abstract))

    Article  Google Scholar 

  • Zou C, Yang Z, Cu J, Zhu R, Hou L, Tao S, Yuan X, Wu S, Lin S, Wang L, Bai B, Yao J (2013) Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China. Petrol Explor Dev 40(1):14–26 ((in Chinese with English abstract))

    Article  Google Scholar 

  • Zou C, Yang Z, Wang H, Dong D, Liu H, Shi Z, Zhang B, Sun S, Liu D, Li G, Wu S, Pang Z, Pan S, Yuan Y (2019) “Exploring petroleum inside source kitchen”: Jurassic unconventional continental giant shale oil & gas field in Sichuan basin. China Acta Geol 93(07):1551–1562 ((in Chinese with English abstract))

    Google Scholar 

Download references

Acknowledgements

We are very grateful to the Prof. Abdullah Al-Amri (Editor-in-Chief), Prof. Santanu Banerjee (Co-Editor-in-Chief), and the anonymous reviewers for handling our manuscript and providing us with helpful comments, which considerably improved the manuscript. We appreciate the efforts of SINOPEC Shengli Oilfield Exploration and Development Research Institute for providing valuable opportunity for core description, sampling, and geological data.

Funding

This study received funding from National Major Science and Technology Projects of China (no. 2017ZX05049-004), Sichuan Provincial Department of Education Scientific Research Project (no. 17ZA0038), and Development Funding Program for Young and Middle-aged Key Teachers in Chengdu University of Technology (no. 2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Santanu Banerjee

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, M., Wang, X., Du, Y. et al. Organic geochemical characteristics of shale in the lower sub-member of the third member of Paleogene Shahejie Formation (Es3L) in Zhanhua Sag, Bohai Bay Basin, eastern China: significance for the shale oil-bearing evaluation and sedimentary environment. Arab J Geosci 15, 375 (2022). https://doi.org/10.1007/s12517-022-09670-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-09670-7

Keywords

Navigation