Skip to main content

Advertisement

Log in

Assessment and prediction of the climate change impact on crop yield, in Jimma Zone Upper Gilgel Gibe Districts, Ethiopia

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Climate change and its impacts continue and become a major challenge if proper mitigation measures are not taken. This study aimed to analyze and predict the impact of climate change on crop yield under two Representative Concentration Pathways (RCPs), high (RCP8.5) and medium (RCP4.5) emission global warming scenarios of rainfall and temperature data derived from the Coordinated Regional Climate Downscaling Experiment (CORDEX) Africa, Regional Climate Models (RCMs). The performance of REgional MOdel (REMO2009), High-Resolution Hamburg Climate Model 5 (HIRAM5), Climate Limited-Area Modeling Community (CCLM4-8), and Rossby Center Regional Atmospheric Model (RCA4) RCMs were evaluated using observed rainfall and temperature data of (1985–2005), and the results proved that the ensemble of these models performed well as compared to the performance of individual models. Bias-corrected RCMs ensemble rainfall and temperature projected data of RCP8.5 and RCP4.5 for the future period of (2030–2050) were used as an input in artificial neural network (ANN) to predict sorghum, maize, teff, and wheat yield. Analysis of the projected data shows that under RCP8.5 scenarios, the maximum temperature will increase up to 2.84 °C while the minimum temperature is expected to increase in the range of 1.36–2.2 °C. Under RCP4.5, the minimum temperature increases in the range of 0.38–1.83 °C. The projected rainfall shows that there would be a shift in maximum rainfall from July to August. Under RCP8.5 temperature scenarios, the sorghum, wheat, and teff yield would decrease within the range of 2.64–8.42%, 4.47–8.35%, and 1.77–9.77% respectively. In the RCP8.5 rainfall scenario, maize and wheat yield are expected to increase, but teff and sorghum to decrease. In the future period of 2030–2050 years, the change in temperature will have a greater impact on crop yield than the change in rainfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abhishek K, Kumar A, Ranjan R, Kumar S (2012) A rainfall prediction model using artificial neural network. IEEE Control and System Graduate Research Colloquium (ICSGRC), pp 82–87. https://doi.org/10.1109/icsgrc.2012.6287140

  • Abrougui K, Gabsi K, Mercatoris B, Khemis C, Amami R, Chehaibi S (2019) Prediction of organic potato yield using tillage systems and soil properties by an artificial neural network (ANN) and multiple linear regressions (MLR). Soil Tillage Res 190:202–208. https://doi.org/10.1016/j.still.2019.01.011

    Article  Google Scholar 

  • Akumaga U, Tarhule A, Piani C, Traore B, Yusuf A (2018) Utilizing process-based modeling to assess the impact of climate change on crop yields and adaptation options in the Niger River Basin, West Africa. Agronomy 8(2):11

    Article  Google Scholar 

  • Almazroui M (2019) Temperature changes over the CORDEX-MENA domain in the 21st century using CMIP5 data downscaled with RegCM4: a focus on the Arabian Peninsula. Adv Meteorol 2019:1–18. https://doi.org/10.1155/2019/5395676

    Article  Google Scholar 

  • Almazroui M, Saeed F, Saeed S, Nazrul Islam M, Ismail M, Klutse NAB, Siddiqui MH (2020) Projected change in temperature and precipitation over Africa from CMIP6. Earth Syst Environ 4(3):455–475. https://doi.org/10.1007/s41748-020-00161-x

    Article  Google Scholar 

  • Almazroui M, Saeed F, Saeed S, Ismail M, Ehsan MA, Islam MN, Abid MA, O’Brien E, Kamil S, Rashid IU, Nadeem I (2021) Projected changes in climate extremes using CMIP6 simulations over SREX regions. Earth Syst Environ 5(3):481–497. https://doi.org/10.1007/s41748-021-00250-5

    Article  Google Scholar 

  • Appiah DO (2019) Climate policy research uptake dynamics for sustainable agricultural development in Sub-Saharan Africa. GeoJournal. https://doi.org/10.1007/s10708-019-09976-2

    Article  Google Scholar 

  • Araya A, Keesstra SD, Stroosnijder L (2010) A new agro-climatic classification for crop suitability zoning in northern semi-arid Ethiopia. Agric Meteorol 150:1057–1064. https://doi.org/10.1016/j.agrformet.2010.04.003

    Article  Google Scholar 

  • Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB, Cammarano D, Kimball BA, Ottman MJ, Wall GW, White JW, Reynolds MP, Alderman PD, Prasad PVV, Aggarwal PK, Anothai J, Basso B, Biernath C, Challinor AJ, De Sanctis G, Doltra J (2014) Rising temperatures reduce global wheat production. Nat Clim Chang 5(2):143–147

    Article  Google Scholar 

  • Ayugi B, Ngoma H, Babaousmail H, Karim R, Iyakaremye V, Lim Kam Sian KTC, Ongoma V (2021) Evaluation and projection of mean surface temperature using CMIP6 models over East Africa. J Afr Earth Sci 181:104226

    Article  Google Scholar 

  • Capitani C, Garedew W, Mitiku A, Berecha G, Hailu BT, Heiskanen J, Hurskainen P, Platts PJ, Siljander M, Pinard F, Johansson T, Marchant R (2018) Views from two mountains: exploring climate change impacts on traditional farming communities of Eastern Africa highlands through participatory scenarios. Sustain Sci 14(1):191–203. https://doi.org/10.1007/s11625-018-0622-x

    Article  Google Scholar 

  • Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)?—arguments against avoiding RMSE in the literature. Geosci Model Dev 7(3):1247–1250. https://doi.org/10.5194/gmd-7-1247-2014

    Article  Google Scholar 

  • Chlingaryan A, Sukkarieh S, Whelan B (2018) Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review. Comput Electron Agric 151:61–69. https://doi.org/10.1016/j.compag.2018.05.012

    Article  Google Scholar 

  • Citakoglu H, Babayigit B, Haktanir NA (2020) Solar radiation prediction using multi-gene genetic programming approach. Theoret Appl Climatol 142(3–4):885–897. https://doi.org/10.1007/s00704-020-03356-4

    Article  Google Scholar 

  • Dahikar SS, Rode SV (2014) Agricultural crop yield prediction using an artificial neural network approach. Int J Innov Res Electr Electron Instrum Control Eng 2(1):683–686

    Google Scholar 

  • Dariane A, Ashrafi Gol M, Karami F (2019) Forecasting of rainfall using different input selection methods on climate signals for neural network inputs. J Hydraul Struct 5(1):42–59. https://doi.org/10.22055/jhs.2019.29625.1113

  • Demissie TA, Sime CH (2021) Assessment of the performance of CORDEX regional climate models in simulating rainfall and air temperature over southwest Ethiopia. Heliyon 7(8):e07791. https://doi.org/10.1016/j.heliyon.2021.e07791

    Article  Google Scholar 

  • Dhunny AZ, Seebocus RH, Allam Z, Chuttur MY, Eltahan M, Mehta H (2020) Flood prediction using artificial neural networks: empirical evidence from Mauritius as a case study. Knowl Eng Data Sci 3(1):1–10. https://doi.org/10.17977/um018v3i12020p1-1

    Article  Google Scholar 

  • Dibaba WT, Demissie TA, Miegel K (2020) Watershed hydrological response to combined land use/land cover and climate change in highland Ethiopia: Finchaa Catchment. Water 12(6):1801. https://doi.org/10.3390/w12061801

    Article  Google Scholar 

  • Dibaba WT, Miegel K, Demissie TA (2019) Evaluation of the CORDEX regional climate models performance in simulating climate conditions of two catchments in Upper Blue Nile Basin. Dyn Atmos Oceans 87:101104. https://doi.org/10.1016/j.dynatmoce.2019.101104

    Article  Google Scholar 

  • Dosio A, Jury MW, Almazroui M, Ashfaq M, Diallo I, Engelbrecht FA, Klutse NAB, Lennard C, Pinto I, Sylla MB, Tamoffo AT (2021) Projected future daily characteristics of African precipitation based on global (CMIP5, CMIP6) and regional (CORDEX, CORDEX-CORE) climate models. Clim Dyn. https://doi.org/10.1007/s00382-021-05859-w

  • Ehret U, Zehe E, Wulfmeyer V, Warrach-Sagi K, Liebert J (2012) HESS Opinions “Should we apply bias correction to global and regional climate model data?” Hydrol Earth Syst Sci 16(9):3391–3404. https://doi.org/10.5194/hess-16-3391-2012

  • El-Shafie A, Mukhlisin M, Najah AA, Taha MR (2011) Performance of artificial neural network and regression techniques for rainfall-runoff prediction. Int J Phys Sci 6(8):1997–2003. https://doi.org/10.5897/IJPS11.314

    Article  Google Scholar 

  • Eshetu G, Johansson T, Garedew W, Yisahak T (2020) Determinants of smallholder farmers’ adaptation options to climate change in a coffee-based farming system of Southwest Ethiopia. Clim Dev 1–8. https://doi.org/10.1080/17565529.2020.1772706

  • Fazzini M, Bisci C, Billi P (2015) The climate of Ethiopia. In Billi P (eds) Landscapes and landforms of Ethiopia. World geomorphological landscapes. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8026-1_3

  • Ghazi B, Jeihouni E, Kouzehgar K and Haghighi AT (2021a) Assessment of probable groundwater changes under representative concentration pathway (RCP) scenarios through the wavelet–GEP model. Environ Earth Sci 80(12)

  • Ghazi B, Jeihouni E and Kalantari Z (2021b) Predicting groundwater level fluctuations under climate change scenarios for Tasuj plain, Iran. Arab J Geosci 14(2). https://doi.org/10.1007/s12517-021-06508-6

  • Jeihouni E, Mohammadi M, Ghazi B (2021) Response of the Shabestar Plain aquifer to climate-change scenarios through statistical and hybrid soft computing techniques. Groundw Sustain Dev 15:100649. https://doi.org/10.1016/j.gsd.2021.100649

    Article  Google Scholar 

  • Jilo NB, Gebremariam B, Harka AE, Woldemariam GW, Behulu F (2019) Evaluation of the impacts of climate change on sediment yield from the Logiya Watershed, Lower Awash Basin, Ethiopia. Hydrology 6(3):81. https://doi.org/10.3390/hydrology6030081

    Article  Google Scholar 

  • Jung S-K, McDonald K (2011) Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization. BMC Bioinformatics 12(1)

  • Kahsay KD, Pingale SM, Hatiye SD (2018) Impact of climate change on groundwater recharge and base flow in the sub-catchment of Tekeze basin, Ethiopia. Groundw Sustain Dev 6:121–133. https://doi.org/10.1016/j.gsd.2017.12.002

    Article  Google Scholar 

  • Kaul M, Hill RL, Walthall C (2005) Artificial neural networks for corn and soybean yield prediction. Agric Syst 85(1):1–18. https://doi.org/10.1016/j.agsy.2004.07.009

    Article  Google Scholar 

  • Kassaye AY, Shao G, Wang X, Shifaw E and Wu S (2021) Impact of climate change on the staple food crops yield in Ethiopia: implications for food security. Theor Appl Climatol. https://doi.org/10.1007/s00704-021-03635-8

  • Khosla E, Dharavath R, Priya R (2019) Crop yield prediction using aggregated rainfall-based modular artificial neural networks and support vector regression. Environ Dev Sustain 22(6):5687–5708. https://doi.org/10.1007/s10668-019-00445-x

    Article  Google Scholar 

  • Kim J, Waliser DE, Mattmann CA, Goodale CE, Hart AF, Zimdars PA, Crichton DJ, Jones C, Nikulin G, Hewitson B, Jack C, Lennard C, Favre A (2013) Evaluation of the CORDEX-Africa multi-RCM hindcast: systematic model errors. Clim Dyn 42(5–6):1189–1202. https://doi.org/10.1007/s00382-013-1751-7

    Article  Google Scholar 

  • Li C, Edwards S, Scialabba N (2011) Climate change and food systems resilience in Sub-Saharan Africa. Rome: food and agriculture organization of the united nations

  • Mann ML, Warner JM (2017) Ethiopian wheat yield and yield gap estimation: a spatially explicit small area integrated data approach. Field Crop Res 201:60–74. https://doi.org/10.1016/j.fcr.2016.10.014

    Article  Google Scholar 

  • Mera GA (2018) Drought and its impacts in Ethiopia. Weather and Climate Extremes, [online] 22, pp.24–35. https://doi.org/10.1016/j.wace.2018.10.002

  • MoFED (2014) ‘The Federal Democratic Republic of Ethiopia growth and transformation plan (GTP) draft Ministry of Finance and Economic Development (MoFED )’, (September 2010)

  • Moges AG (2020) The challenges and policies of poverty reduction in Ethiopia. Ethiopian e-Journal for Research and Innovation Foresight (Ee-JRIF), 5(1). https://doi.org/10.1007/s10661-020-08429-5

  • Mutayoba E, Kashaigili JJ (2017) Evaluation for the performance of the CORDEX regional climate models in simulating rainfall characteristics over Mbarali River catchment in the Rufiji Basin, Tanzania. J Geosci Environ Prot 05:139–151. https://doi.org/10.4236/gep.2017.54011

    Article  Google Scholar 

  • Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R, Christensen OB, Déqué M, Fernandez J, Hänsler A, van Meijgaard E, Samuelsson P, Sylla MB, Sushama L (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Clim 25(18):6057–6078. https://doi.org/10.1175/JCLI-D-11-00375.1

    Article  Google Scholar 

  • O’Neal MR, Engel BA, Ess DR, Frankenberger JR (2002) Neural network prediction of maize yield using alternative data coding algorithms. Biosyst Eng 83(1):31–46

    Article  Google Scholar 

  • Ongoma V, Chen H, Gao C (2018) Evaluation of CMIP5 twentieth century rainfall simulation over the equatorial East Africa. Theoret Appl Climatol 135(3–4):893–910. https://doi.org/10.1007/s00704-018-2392-x

    Article  Google Scholar 

  • Öztopal A (2006) Artificial neural network approach to spatial estimation of wind velocity data. Energy Convers Manage 47(4):395–406

    Article  Google Scholar 

  • Park C, Min SK, Lee D, Cha DH, Suh MS, Kang HS, Hong SY, Lee D-K, Baek H-J, Boo KO, Kwon WT (2015) Evaluation of multiple regional climate models for summer climate extremes over East Asia. Clim Dyn 46(7–8):2469–2486. https://doi.org/10.1007/s00382-015-2713-z

    Article  Google Scholar 

  • Platts PJ, Omeny PA, Marchant R (2014) AFRICLIM: high-resolution climate projections for ecological applications in Africa. Afr J Ecol 53(1):103–108. https://doi.org/10.1111/aje.12180

    Article  Google Scholar 

  • Reddy VR, Pachepsky YA (2000) Predicting crop yields under climate change conditions from monthly GCM weather projections. Environ Model Softw 15(1):79–86. https://doi.org/10.1016/S1364-8152(99)00011-0

    Article  Google Scholar 

  • Rowhani P, Lobell DB, Linderman M, Ramankutty N (2011) Climate variability and crop production in Tanzania. Agric Meteorol 151(4):449–460

    Article  Google Scholar 

  • Sedki A, Ouazar D, El Mazoudi E (2009) Evolving neural network using real coded genetic algorithm for daily rainfall–runoff forecasting. Expert Syst Appl 36(3):4523–4527. https://doi.org/10.1016/j.eswa.2008.05.024

    Article  Google Scholar 

  • Seleshi Y, Zanke U (2004) Recent changes in rainfall and rainy days in Ethiopia. Int J Climatol 24(8):973–983. https://doi.org/10.1002/joc.1052

    Article  Google Scholar 

  • Sime CH, Demissie TA, Tufa FG (2020) Surface runoff modeling in Ketar watershed, Ethiopia. Journal of Sedimentary. Environments 5(1):151–162. https://doi.org/10.1007/s43217-020-00009-4

    Article  Google Scholar 

  • Stocker Thomas F, Climate Change (2013) The physical science basis: summary for policymakers, a report of working group I of the IPCC, Technical Summary, a report accepted by working group I of the IPCC

  • van Pelt SC, Kabat P, ter Maat HW, van den Hurk BJJM, Weerts AH (2009) Discharge simulations performed with a hydrological model using bias corrected regional climate model input. Hydrol Earth Syst Sci 13(12):2387–2397. https://doi.org/10.5194/hess-13-2387-2009

    Article  Google Scholar 

  • van Vooren S, Van Schaeybroeck B, Nyssen J, Van Ginderachter M, Termonia P (2019) Evaluation of CORDEX rainfall in northwest Ethiopia: sensitivity to the model representation of the orography. Int J Climatol 39:2569–2586. https://doi.org/10.1002/joc.5971

    Article  Google Scholar 

  • You L, Ringler C, Wood-Sichra U, Robertson R, Wood S, Zhu T, Nelson G, Guo Z, Sun Y (2011) What is the irrigation potential for Africa? A combined biophysical and socioeconomic approach. Food Policy 36(6):770–782. https://doi.org/10.1016/j.foodpol.2011.09.001

    Article  Google Scholar 

  • Zezza A, Tasciotti L (2010) Urban agriculture, poverty, and food security: empirical evidence from a sample of developing countries. Food Policy 35(4):265–273. https://doi.org/10.1016/j.foodpol.2010.04.007

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere gratitude to Jimma University Institute of Technology Center of Excellence in Science and Technology for their guidance. We like to thank the World Climate Research Institute for providing CORDEX data used for this study. We extend thanks to the National Meteorological Agency of Ethiopia, and the Jimma Zone Agricultural and Natural Resource Office for providing the required data for this study. Finally, we would like to thank Dr. A. Venkata Ramayya, focal person, JiT ExiST CoE, for their encouragement enthusiastic support, and many kindnesses in coordinating this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chala Hailu Sime.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Haroun Chenchouni

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1340 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sime, C.H., Demissie, T.A. Assessment and prediction of the climate change impact on crop yield, in Jimma Zone Upper Gilgel Gibe Districts, Ethiopia. Arab J Geosci 15, 313 (2022). https://doi.org/10.1007/s12517-022-09605-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-09605-2

Keywords

Navigation