Skip to main content
Log in

Age determination and evolution of the paleoenvironmental conditions of Oligocene-Miocene sediments (Qom Formation) in the Qom Back-Arc Basin (northern margin of Neotethys), Central Iran

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The age and evolution of paleoenvironmental conditions in the Oligocene-Miocene sedimentary sequences (Qom Formation) from the Andabad, Nowbaran, and Kahak areas were studied from the distribution of benthic foraminifera, microfacies, and microtaphofacies. We identified 56 species from 40 genera and two subspecies of planktic and large benthic foraminifera belonging to three biozones. The Qom Formation spans the Rupelian to Chattian, Aquitanian, and Burdigalian ages, in the Kahak, Nowbaran, and Andabad areas, respectively. Nine microfacies, five microtaphofacies, and one terrigenous facies were identified in the Qom Formation in the studied areas. Moderate (40–50 psu) to high (> 50 psu) salinity and euphotic conditions were dominant during the lower Rupelian-Chattian (Kahak area), lower Aquitanian (Nowbaran area), upper Aquitanian (Nowbaran area), lower Burdigalian (Andabad area), and upper Burdigalian (Andabad area). Variable salinity conditions from normal (34–40 psu) to high (>50 psu) and photic conditions from euphotic to mesophotic-oligophotic characterize the upper Rupelian-Chattian (Kahak area), middle Aquitanian (Nowbaran area), and middle Burdigalian (Andabad area) stages. Mesotrophic-oligotrophic conditions are observed during the Oligocene (Rupelian-Chattian) and the Miocene (Aquitanian and Burdigalian). Furthermore, hydrodynamic energy during the Rupelian-Chattian was higher than during the Aquitanian and Burdigalian, and seawater depth was greater during the Aquitanian age and was deeper than during the Rupelian-Chattian and Burdigalian in the Qom basin (back-arc basin). The connection between the Tethys seaway and Paratethys basins was completed during the early and middle Miocene (Burdigalian and Langhian).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Abaie I, Ansari HJ, Badakhshan A, Jaafari A (1964) History and development of the Alborz and Sarajeh fields of Central Iran. Bull Iranian Pet Inst 15:561–574

    Google Scholar 

  • Adams TD, Bourgeois F (1967) Asmari biostratigraphy: Iranian oil operating companies. Geological and Exploration Division. Report 1074

  • Agard P, Omrani J, Jolivet J, Mouthereau F (2005) Convergence history across Zagros (Iran): Constraints from collisional and earlier deformation. Int J Earth Sci 94(3):401–419

    Article  Google Scholar 

  • Aghanabati A (2006) Geology of Iran. Geological Survey of Iran, Tehran (in Russian)

    Google Scholar 

  • Alavi M (2004) Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. Am J Sci 304(1):1–20

    Article  Google Scholar 

  • Allen MB, Armstrong HA (2008) Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeogr Palaeoclimatol Palaeoecol 2655:2–58

    Google Scholar 

  • Allison PA, Bottjer DJ (2011) Taphonomy: process and bias through time. Springer, New York

    Book  Google Scholar 

  • Berberian M (1983) Generalized tectonic map of Iran. Geological survey of Iran, Report 52.

  • Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265

    Article  Google Scholar 

  • Beavington-Penney SJ (2004) Analysis of the effects of abrasion on the test of Palaeonummulites venosus: implications for the origin of nummulithoclastic sediments. Palaios 19:143–155

    Article  Google Scholar 

  • Beavington-Penney SJ, Racey A (2004) Ecology of extant nummulitids and other large benthic foraminifera: applications in palaeoenvironmenanalysis. Earth-Sci Rev 67:219–265

    Article  Google Scholar 

  • Benedetti A, Briguglio A (2012) Risananeiza crassaparies n. sp. from the upper Chattian of Porto Badisco (southern Apulia, Italy). Boll Soc Paleontol Ital 51:167–176

  • BouDagher-Fadel MK (2012) Biostratigraphic and geological significance of planktonic foraminifera. Elsevier, London

    Google Scholar 

  • Boukhary M, Kuss J, Abdelraouf M (2008) Chattian larger foraminifera from Risan Aneiza, northern Sinai, Egypt, and implications for Tethyan paleogeography. Stratigraphy 5:179–192

    Google Scholar 

  • Brachert TC, Betzler C, Braga JC, Martin JM (1998) Microtaphofacies of a warm-temperate carbonate ramp (uppermost Tortonian/lowermost Messinian, southern Spain). Palaios 13:459–475

    Article  Google Scholar 

  • Brandano M, Corda L (2002) Nutrients, sea level and tectonics: constrains for the facies architecture of a Miocene carbonate ramp in central Italy. Terra Nova 14:257–262

    Article  Google Scholar 

  • Brandano M, Cornacchia I, Raffi I, Tomassetti L (2016) The Oligocene–Miocene stratigraphic evolution of the Majella carbonate platform (Central Apennines, Italy). Sediment Geol 333:1–14

    Article  Google Scholar 

  • Cahuzac B, Poignant A (1997) Essai de biozonation de l9Oligo-Miocene dans les bassins europeens a l9aide des grands foraminiferes neritiques. Bull Soc Géol France 168:155–169

    Google Scholar 

  • Corda L, Brandano M (2003) Aphotic zone carbonate production on a Miocene ramp, Central Apennines, Italy. Sediment Geol 161:55–70

    Article  Google Scholar 

  • Daneshian J, Dana LR (2007) Early Miocene benthic foraminifera and biostratigraphy of the Qom Formation, Deh Namak, central Iran. J Asian Earth Sci 29:844–858

    Article  Google Scholar 

  • Daneshian J, Ghanbari M (2017) Stratigraphic distribution of planktonic foraminifera from the Qom Formation: A case study from the Zanjan area (NW Central Iran). Neues Jahrb Geol Paläontol 283:239–254

    Article  Google Scholar 

  • Daneshian J, Moallemi SA, Derakhshani M (2016) Refinement of stratigraphy according to the first finds of planktonic species of Orbulina and Praeorbulina from the Guri Limestone of the Mishan Formation in northwest of Bandar Abbas, South Iran. Stratigr Geol Correl 24:267–275

    Article  Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks. A symposium, American Association Petroleum Geologist, Washington D.C., pp 108–121.

  • Ehrenberg SN, Picard NAH, Laursen GV, Monibi S, Mossadegh ZK, Svana TA, Aqrawi AAM, McArthur JM, Thirlwall MF (2007) Strontium isotope stratigraphy of the Asmari Formation (Oligocene – Lower Miocene), SW Iran. J Pet Geol 30:107–128

    Article  Google Scholar 

  • Embry AF, Klovan JE (1972) Late Devonian reef tract on northeastern Banks Island, Northwest territories. Bull Can Pet Geol 19:730–781

    Google Scholar 

  • Ferràndez-Cañadell C, Bover-Arnal T (2017) Late chattian larger foraminifera from the prebetic domain (se spain): new data on shallow benthic zone 23. Palaios 32:83–109

    Article  Google Scholar 

  • Furrer MA, Sonder PA (1955) The Oligo-Miocene marine formation in the Qum region (Central Iran). Proceedings of the 4th World Petroleum Congress, Section 1/A/5, Carlo Colombo, Rome, 267–277.

  • Gansser A (1955) Geological note on NW Iran. National Iranian Oil Company, Geological Report 98

  • Gedik F (2015) Benthic foraminiferal biostratigraphy of Malatya Oligo-Miocene succession (Eastern Taurids, Eastern Turkey). Bull Min Res Exp 150:19–50

    Google Scholar 

  • Geel T (2000) Recognition of stratigraphic sequence in carbonate platform and slope deposits: empirical models based on microfasies analysis of Paleogene deposits in outhestern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 155:211–238

    Article  Google Scholar 

  • Ghalamghash A, Babakhani R (1996) Geological map 1: 100,000 Kahak, Geological Survey and Mineral Exploration of. Iran, Tehran

    Google Scholar 

  • Golonka J (2000) Cambrian–Neogen Plate Tectonic Maps. Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków, Poland

    Google Scholar 

  • Greenstein BJ, Pandolfi JM (2003) Taphonomic alteration of reef corals: effects of reef environment and coral growth form II: The Florida Keys. Palaios 18:495–509

    Article  Google Scholar 

  • Hakimzadeh S, Seyrafian A (2008) Late Oligocene-early Miocene benthic foraminifera and biostratigraphy of the Asmari Formation south Yasuj, north-central Zagros basin, Iran. Carbonate Evaporite 23:1–10

    Article  Google Scholar 

  • Halfar J, Godinez-Orta L, Mutti M, Valdez-Holguín JE, Borges JM (2004) Nutrient and temperature controls on modern carbonate production: an example from the Gulf of California, Mexico. Geology 32:213–216

    Article  Google Scholar 

  • Hallock P (1988) The role of nutrient availability in bioerosion: consequences to carbonate buildups. Palaeogeogr Palaeoclimatol Palaeoecol 63(1-3):275–291

    Article  Google Scholar 

  • Hallock P (1999) Symbiont-bearing Foraminifera. In: Sen Gupta B (ed) Modern Foraminifera. Kluwer Press, Amsterdam, pp 123–139

    Chapter  Google Scholar 

  • Hallock P, Forward LB, Hansen HJ (1986) Influence of environment on the test shape of Amphistegina. J Foramin Res 16:224–231

    Article  Google Scholar 

  • Hallock P, Glenn EC (1985) Numerical analysis of foraminiferal assemblages: a tool for recognizing depositional facies in Lower Miocene reef complexes. J Paleontol 1:1382–1394

    Google Scholar 

  • Hallock P, Hansen HJ (1979) Depth adaptation in Amphistegina: change in lamellar thickness. Bull Geol Soc Denmark 27:99–104

    Article  Google Scholar 

  • Hallock P, Schlager W (1986) Nutrient excess and the demise of coral reefs and carbonate platform. Palaios 1:389–398

    Article  Google Scholar 

  • Harzhauser M, Piller WE (2007) Benchmark data of a changing sea—palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr Palaeoclimatol Palaeoecol 253:8–31

    Article  Google Scholar 

  • Heydari E (2008) Tectonics versus eustatic control on supersequences of the Zagros Mountains of Iran. Tectonophysics 451:56–70

    Article  Google Scholar 

  • Horton BK, Hassanzadeh J, Stockli DF, Axen GJ, Gillis RJ, Guest B, Amini A, Fakhari MD, Zamanzadeh SM, Grove M (2008) Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: implications for chronostratigraphy and collisional tectonics. Tectonophysics 451:97–122

    Article  Google Scholar 

  • Hottinger L (2000) Functional morphology of benthic foraminiferal shells, envelopes of cells beyond measure. Micropaleontology 46:57–86

    Google Scholar 

  • Jamshidi KH, Masoomi R, Nozari A (2001) Geological map 1: 100,000 Nowbaran, Geological Survey and Mineral Exploration of. Iran, Tehran

    Google Scholar 

  • Jones RW, Simmons MD (1998) A review of the stratigraphy of Eastern Paratethys (Oligocene-Holocene), with particular emphasis on the Black Sea. Am Assoc Pet Geol Bull 52:39–52

    Google Scholar 

  • Jones RW, Simmons MD, Whittaker JE (2006) On the stratigraphical and palaeobiogeographical significance of Borelis melo melo (Fichtel & Moll, 1798) and B. melo curdica (Reichel, 1937) (Foraminifera, Miliolida, Alveolinidae). J Micropalaeontol 25:175–185

    Article  Google Scholar 

  • Kiani T (2001) Geological map 1: 100,000 Mah Neshan, Geological survey and Mineral Exploration of. Iran, Tehran

    Google Scholar 

  • Larsen AR (1978) Phylogenetic and paleobiogeographical trends in the foraminiferal genus Amphistegina. Rev de Micropaleontol 10:217–243

    Google Scholar 

  • Larsen AR, Drooger CW (1977) Relative thickness of the test in the Amphistegina species of the Gulf of Elat. Utrecht Micropaleontol Bull 15:225–239

    Google Scholar 

  • Loeblich AR, Tappan JH (1988) Foraminiferal Genera and their Classification. Van Nostrand Reinhold

    Book  Google Scholar 

  • Loftus W (1854) On the geology of the portions of the Torco-Persian frontier and of the districts adjoining. Geol Soc Lond Mem 10:464–469

    Article  Google Scholar 

  • Mahyad M, Safari A, Vaziri-Moghaddam H, Seyrafian A (2019) Biofacies, taphofacies, and depositional environments in the north of Neotethys Seaway (Qom Formation, Miocene, Central Iran). Russ Geol Geophys 60:1709–1727

    Article  Google Scholar 

  • Mateu-Vicens G, Hallock P, Brandano M, Demchuk T, Gary A (2009) Test shape variability of Amphistegina d’Orbigny 1826 as a paleobathymetric proxy: application to two Miocene examples. Geologic problems solving with microfossils. Geol Soc Lond Mem 93:67–82

    Google Scholar 

  • Moghadam MY (2011) Early Oligocene larger foraminiferal biostratigraphy of the Qom Formation, south of Uromieh (NW Iran). Turk J Earth Sci 20:847–856

    Google Scholar 

  • Mohammadi E, Ameri H (2015) Biotic components and biostratigraphy of the Qom Formation in northern Abadeh, Sanandaj–Sirjan fore-arc basin, Iran (northeastern margin of the Tethyan Seaway). Arab J Geosci 8:10789–10802

    Article  Google Scholar 

  • Morley CK, Kongwung B, Julapour AA, Abdolghafourian M, Hajian M, Waples D, Warren J, Otterdoom H, Srisuriyon K, Kazemi H (2009) Structural development of a major late Cenozoic basin and transpressional belt in central Iran: The Central Basin in the Qom-Saveh area. Geosphere 5:325–362

    Article  Google Scholar 

  • Mossadegh ZK, Haig DW, Allan T, Hdabi MH, Sadeghi A (2009) Salinity changes during late Oligocene to early Miocene Asmari Formation deposition, Zagros Mountains. Iran. Palaeogeogr Palaeoclimatol Palaeoecol 272:17–36

    Article  Google Scholar 

  • Mutti M, Hallock P (2003) Carbonate systems along nutrient and temperature gradients: some sedimentological and geochemical constraints. Int J Earth Sci 92:465–475

    Article  Google Scholar 

  • Nebelsick JH, Bassi D (2000) Diversity, growth forms, and taphonomy: key factors controlling the fabric of coralline algae dominated shelf carbonates. Geol Soc Lond Mem 178:89–107

    Google Scholar 

  • Nebelsick JH, Bassi D, Rasser MW (2011) Microtaphofacies: exploring the potential for taphonomic analysis in carbonates. In: Allison PA, Bottjer DJ (eds) Taphonomy. Springer, Aims and Scope Topics in Geobiology Book Series, pp 337–373

    Google Scholar 

  • Özcan E, Less G, Báldi-Beke M, Kollányi K, Acar F (2009) Oligo-Miocene foraminiferal record (Miogypsinidae, Lepidocyclinidae and Nummulitidae) from the Western Taurides (SW Turkey): biometry and implications for the regional geology. Int J Earth Sci 34:740–760

    Google Scholar 

  • Payros A, Pujalte V, Tosquella J, Orue-Etxebarria X (2010) The Eocene storm-dominated foralgal ramp of the western Pyrenees (Urbasa-Andia Formation): an analogue of future shallow-marine carbonate systems. Sediment Geol 228:184–204

    Article  Google Scholar 

  • Pomar L (2001) Types of carbonate platforms: a genetic approach. Basin Res 13:313–334

    Article  Google Scholar 

  • Pomar L, Baceta JI, Hallock P, Mateu-Vicens G, Basso D (2017) Reef building and carbonate production modes in the west-central Tethys during the Cenozoic. Mar Pet Geol 83:261–304

    Article  Google Scholar 

  • Pomar L, Brandano M, Westphal H (2004) Environmental factors influencing skeletal grain sediment associations: a critical review of Miocene examples from the western Mediterranean. Sedimentology 51:627–651

    Article  Google Scholar 

  • Pomar L, Mateu-Vicens G, Morsilli M, Brandano M (2014) Carbonate ramp evolution during the late Oligocene (Chattian), Salento Peninsula, southern Italy. Palaeogeogr Palaeoclimatol Palaeoecol 404:109–132

    Article  Google Scholar 

  • Quaranta F, Tomassetti L, Vannucci G, Brandano M (2012) Coralline algae as environmental indicators: a case study from the Attard member (Chattian, Malta). Geodiversitas 34:151–166

    Article  Google Scholar 

  • Reuter M, Piller WE, Harzhauser M, Mandic O, Berning B, Rogl F, Kroh A, Aubry MP, Wielandt-Schuster U, Hamedani A (2009) The Oligo-Miocene Qom Formation (Iran): evidence for an early Burdigalian restriction of the Tethyan Seaway and closure of its Iranian gateways. Int J Earth Sci 98:627–650

    Article  Google Scholar 

  • Rögl F (1997) Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Annalen des Naturhistorischen Museums in Wien. Serie A für Mineralogie und Petrographie, Geologie und Paläontologie. Anthropologie und Prähistorie 99:279–310

    Google Scholar 

  • Rögl F (1999) Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geol Carpathica 50:339–349

    Google Scholar 

  • Rögl F, Brandstätter F (1993) The foraminifera genus Amphistegina in the Korytnica Clays (Holy Cross Mts, Central Poland) and its significance in the Miocene of the Paratethys. Acta Geol Pol 43:121–146

    Google Scholar 

  • Romero J, Caus E, Rosell J (2002) A model for the palaeoenvironmental distribution of larger foraminifera based on late Middle Eocene deposits on the margin of the South Pyrenean basin (NE Spain). Palaeogeogr Palaeoclimatol Palaeoecol 179:43–56

    Article  Google Scholar 

  • Sadeghi R, Vaziri-Moghaddam H, Taheri A (2009) Biostratigraphy and paleoecology of the Oligo-Miocene succession in Fars and Khuzestan areas (Zagros Basin, SW Iran). Hist Biol 21:17–31

    Article  Google Scholar 

  • Sarkar S (2017) Microfacies analysis of larger benthic foraminifera-dominated Middle Eocene carbonates: a palaeoenvironmental case study from Meghalaya, NE India (Eastern Tethys). Arab J Geosci 10:1–13

    Article  Google Scholar 

  • Serra-Kiel J, Gallardo-Garcia A, Razin P, Robinet J, Roger J, Grelaud C, Leroy S, Robin C (2016) Middle Eocene-Early Miocene larger foraminifera from Dhofar (Oman) and Socotra Island (Yemen). Arab J Geosci 9:1–95

    Article  Google Scholar 

  • Silvestri G, Bosellini FR, Nebelsick JH (2011) Microtaphofacies analysis of lower Oligocene turbid-water coral assemblages. Palaios 26:805–820

    Article  Google Scholar 

  • Van Buchem FSP, Allan TL, Laursen GV, Lotfpour M, Moallemi A, Monibi S, Motiei H, Pickard NAH, Tahmasbi AR, Vedrenne V, Vincent B (2010) Regional stratigraphic architecture and reservoir types of the Oligo-Miocene deposits in the Dezful Embayment (Asmari and Pabdeh Formations) SW Iran. Geol Soc Lond Mem 329:219–263

    Google Scholar 

  • Vincent I, Allen MB, Ismail-Zadeh AD, Flecker R, Foland KA, Simmons D (2005) Insights from the Talysh of Azerbaijan into the Paleogene evolution of the South Caspian region. Geol Soc Am Bull 117:1513–1533

    Article  Google Scholar 

  • Vincent SJ, Morton AC, Carter A, Gibbs S, Barabadze TG (2007) Oligocene uplift of the Western Greater Caucasus: an effect of initial Arabia-Eurasia collision. Terra Nova 19:160–166

    Article  Google Scholar 

  • Weinstein DK, Maher RL, Correa AMS (2019) Bioerosion. In: Loya Y, Puglise K, Bridge T (ed), Mesophotic Coral Ecosystems. Coral Reefs of the World, Springer 12:829–847

    Article  Google Scholar 

  • Wilson ME, Evans MJ (2002) Sedimentology and diagenesis of Tertiary carbonates on the Mangkalihat Peninsula, Borneo: implications for subsurface reservoir quality. Mar Pet Geol 19:873–900

    Article  Google Scholar 

  • Wilson MEJ, Vecsei A (2005) The apparent paradox of abundant foramol facies in low latitudes: their environmental significance and effect on platform development. Earth Sci Rev 69:133–168

    Article  Google Scholar 

  • Yazdi-Moghadam M, Sadeghi A, Adabi MH, Tahmasbi A (2018a) Foraminiferal biostratigraphy of the lower Miocene Hamzian and Arashtanab sections (NW Iran), northern margin of the Tethyan Seaway. Geobios 51(3):231–246

    Article  Google Scholar 

  • Yazdi-Moghadam M, Sadeghi A, Adabi MH, Tahmasbi A (2018b) Stratigraphy of the lower Oligocene nummulitic limestones, north of sonqor (nw iran). Riv Ital di Paleontol e Stratigr 124(2):407–419

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of Isfahan for financial support. We are thankful to Dr. Spencer G. Lucas and professor Michael J. Benton for editing the English language manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrollah Safari.

Additional information

Responsible Editor: Attila Ciner

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, A., Ghanbarloo, H. & Mahyad, M. Age determination and evolution of the paleoenvironmental conditions of Oligocene-Miocene sediments (Qom Formation) in the Qom Back-Arc Basin (northern margin of Neotethys), Central Iran. Arab J Geosci 15, 103 (2022). https://doi.org/10.1007/s12517-021-09372-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-09372-6

Keywords

Navigation