Skip to main content
Log in

The 24 January 2020 (Mw 6.8) Sivrice (Elazig, Turkey) earthquake: a first look at spatiotemporal distribution and triggering of aftershocks

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Sivrice earthquake is the greatest earthquake that appeared in the last 120 years in the Hazar-Sincik segment of the left-lateral strike-slip East Anatolian Fault Zone in Eastern Turkey. This earthquake caused loss of lives and properties, and heavy damage was observed. The statistical properties of aftershocks are analyzed by using b-value known as Gutenberg-Richter law, p-value from Omori law, and Coulomb stress analysis. The magnitude of completeness (Mc) value is determined as 1.5, and the b-value is calculated as 0.77, and it is determined that the mainshock occurred in a region with a high stress level. The p-value is calculated as 0.9, indicating that aftershocks will continue for a certain period of time. Besides, spatial variation of Mc, p-, and b-parameters has been examined. It is seen that the Mc value varies from 1.2 to 2.4, the b-value changes between 0.5 and 1.2, and the p-value ranges from 0.6 to 1.3. The lower b-, p-, and positive Coulomb values indicate that there is still high stress accumulation in the area northeast and southwest of the fault and aftershocks will cluster in these areas. The b- and p-values are higher to the southwest of the mainshock, and since the stress in this region is lower than in other regions, we predict that aftershocks will attenuate faster in this area. Positive Coulomb stress values indicate potential future earthquake areas. The vast majority of aftershocks from the Sivrice earthquake occurred in positive Coulomb stress areas. The stress in the study area is at a critical level, and this earthquake could also activate other segments of the Eastern Anatolian Fault Zone, especially in the southwest direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • AFAD (2020) 24 January 2020 Sivrice (Elazig) earthquake report (in Turkish)

  • Ahmed N, Ghazi S, Khalid P (2016) On the variation of b-value for Karachi region, Pakistan through Gumbel’s extreme distribution method. Acta Geod Geophys 51:227–235. https://doi.org/10.1007/s40328-015-0122-8

    Article  Google Scholar 

  • Aki K (1965) Maximum likelihood estimate of b in the formula log N= a-bM and its confidence limits. Bull Earthq Res Inst Tokyo Univ 43:237–239

    Google Scholar 

  • Aktug B, Ozener H, Dogru A et al (2016) Slip rates and seismic potential on the East Anatolian Fault System using an improved GPS velocity field. J Geodyn 94:1–12

    Article  Google Scholar 

  • Ambraseys NN (1989) Temporary seismic quiescence: SE Turkey. Geophys J Int 96:311–331

    Article  Google Scholar 

  • Ambraseys NN, Jackson JA (1998) Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region. Geophys J Int 133:390–406

    Article  Google Scholar 

  • Anderson J, Wesnousky S, Stirling M (1996) Earthquake size as a function of fault slip rate. Bull Seismol Soc Am 86:683–690

    Article  Google Scholar 

  • Ansari S (2017) Aftershocks properties of the 2013 Shonbe Mw 6.3 earthquake, central Zagros. Iran J Asian Earth Sci 147:17–27

    Article  Google Scholar 

  • Ansari S (2018) Stress triggering and aftershock properties induced by the Dalparri blind thrust fault at NW Zagros: the 18 August 2014 Mormori earthquake. Glob Planet Change 167:99–109

    Article  Google Scholar 

  • Barka AA (1992) The north Anatolian fault zone. In: Annales tectonicae 164–195

  • Baselga S (2020) A combined estimator using TEC and b-value for large earthquake prediction. Acta Geod Geophys 55:63–82. https://doi.org/10.1007/s40328-019-00281-5

    Article  Google Scholar 

  • Bath M (1965) Lateral inhomogeneities of the upper mantle. Tectonophysics 2:483–514

    Article  Google Scholar 

  • Bayrak Y, Ozturk S (2004) Spatial and temporal variations of the aftershock sequences of the 1999 İzmit and Düzce earthquakes. Earth, Planets Sp 56:933–944

    Article  Google Scholar 

  • Bayrak Y, Bayrak E (2012) Regional variations and correlations of Gutenberg-Richter parameters and fractal dimension for the different seismogenic zones in Western Anatolia. J Asian Earth Sci 58:98–107. https://doi.org/10.1016/j.jseaes.2012.06.018

    Article  Google Scholar 

  • Bayrak Y, Yadav RBS, Kalafat D et al (2013) Seismogenesis and earthquake triggering during the Van (Turkey) 2011 seismic sequence. Tectonophysics 601:163–176. https://doi.org/10.1016/j.tecto.2013.05.008

    Article  Google Scholar 

  • Bayrak E, Yilmaz S, Softa M et al (2015) Earthquake hazard analysis for East Anatolian Fault Zone, Turkey. Nat Hazards 76:1063–1077. https://doi.org/10.1007/s11069-014-1541-5

    Article  Google Scholar 

  • Bektas O, Ravat D, Buyuksarac A et al (2007) Regional geothermal characterisation of East Anatolia from aeromagnetic, heat flow and gravity data. Pure Appl Geophys 164:975–998

    Article  Google Scholar 

  • Cheloni D, Akinci A (2020) Source modelling and strong ground motion simulations for the 24 January 2020, Mw 6.8 Elazig earthquake. Turkey Geophys J Int 223:1054–1068. https://doi.org/10.1093/gji/ggaa350

    Article  Google Scholar 

  • Chen K, Zhang Z, Liang C et al (2020) Kinematics and Dynamics of the 24 January 2020 Mw 6.7 Elazig, Turkey Earthquake. Earth Sp Sci 7:e2020EA001452. https://doi.org/10.1029/2020EA001452

    Article  Google Scholar 

  • De Gori P, Akinci A, Pio Lucente F, Kilic T (2014) Spatial and temporal variations of aftershock activity of the 23 October 2011 M w 7.1 Van, Turkey, earthquake. Bull Seismol Soc Am 104:913–930

    Article  Google Scholar 

  • Dogru A, Bulut F, Yaltirak C, Aktug B (2021) Slip distribution of the 2020 Elazig Earthquake (Mw 6.75) and its influence on earthquake hazard in the Eastern Anatolia. Geophys J Int 224:389–400. https://doi.org/10.1093/gji/ggaa471

    Article  Google Scholar 

  • Drakatos G (2000) Relative seismic quiescence before large aftershocks. Pure Appl Geophys 157:1407–1421

    Article  Google Scholar 

  • Duman TY, Emre O (2013) The East Anatolian fault: geometry, segmentation and jog characteristics. Geol Soc London Spec Publ 372:495–529

    Article  Google Scholar 

  • Emre O, Duman TY, Ozalp S, Elmaci H, Olgun S, Saroglu F (2013) 1/1.250.000 scaled Turkey active fault map-General Directorate of Mineral Research and Exploration Special Publication. http://www.mta.gov.tr/. Accessed 24 Jan 2021

  • Emre O, Duman TY, Ozalp S, Saroglu F, Olgun S, Elmaci H, Can T (2018) Active fault database of Turkey. Bull Earthq Eng 16:3229–3275

    Article  Google Scholar 

  • Enescu B, Mori J, Miyazawa M, Kano Y (2009) Omori-Utsu law c-values associated with recent moderate earthquakes in Japan. Bull Seismol Soc Am 99(2A):884–891

    Article  Google Scholar 

  • Fereidoni A, Atkinson GM (2014) Aftershock statistics for earthquakes in the St. Lawrence Valley Seismol Res Lett 85(5):1125–1136

    Article  Google Scholar 

  • Fiedler B, Hainzl S, Zöller G, Holschneider M (2018) Detection of Gutenberg-Richter b-value changes in earthquake time series. Seismol Soc Am Bull 108(5A):2778–2787

    Article  Google Scholar 

  • Freed AM (2005) Earthquake triggering by static, dynamic, and postseismic stress transfer. Annu Rev Earth Planet Sci 33:335–367

    Article  Google Scholar 

  • Frohlich C, Davis SD (1993) Teleseismic b values; or, much ado about 1.0. J Geophys Res Solid Earth 98:631–644

    Article  Google Scholar 

  • Fundo A, Ll D, Kuka S, et al (2012) Probabilistic seismic hazard assessment of Albania. Acta Geod Geophys Hungarica 47:465-479

  • Gallovič F, Zahradník J, Plicka V et al (2020) Complex rupture dynamics on an immature fault during the 2020 Mw 6.8 Elazig earthquake, Turkey. Commun Earth Environ 1:40. https://doi.org/10.1038/s43247-020-00038-x

    Article  Google Scholar 

  • Gulia L, Wiemer S (2010) The influence of tectonic regimes on the earthquake size distribution: a case study for Italy. Geophys Res Lett 37(10)

  • Gulia L, Wiemer S (2019) Real-time discrimination of earthquake foreshocks and aftershocks. Nature 574(7777):193–199

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188

    Article  Google Scholar 

  • Hamdache M, Pelàez JA, Talbi A (2013) Scaling properties of aftershock sequences in Algeria-Morocco region. In: D’amico S (ed) Earthquake Research and Analysis: New Advances in Seismology, 39

  • Helmstetter A, Shaw B (2006) Relation between stress heterogeneity and aftershock rate in the rate-and-state model. J Geophys Res 111:B07304

    Google Scholar 

  • Jaeger JC, Cook NGW (2009) Fundamentals of rock mechanics. Methuen, London 

  • Jamalreyhani M, Buyukakpinar P, Cesca S et al (2020) Seismicity related to the eastern sector of Anatolian escape tectonic: the example of the 24 January 2020 Mw 6.77 Elazig-Sivrice earthquake. Solid Earth Discuss 2020:1–22. https://doi.org/10.5194/se-2020-55

    Article  Google Scholar 

  • Gulia L, Rinaldi AP, Tormann T, Vannucci G, Enescu B, Wiemer S (2018) The effect of a mainshock on the size distribution of the aftershocks. Geophys Res Lett 45(24):13–277

    Article  Google Scholar 

  • Ketin I (1976) San Andreas ve Kuzey Anadolu Fayları arasında bir karşılaştırma (in Turkish). Türkiye Jeoloji Kurumu Bülteni 19:149–154

    Google Scholar 

  • King GCP, Cocco M (2001) Fault interaction by elastic stress changes: new clues from earthquake sequences. In: Dmowska R and Saltzman B (eds) Advances in geophysics Elsevier, 44, pp 1–VIII

  • King GCP, Stein RS, Lin J (1994) Static stress changes and the triggering of earthquakes. Bull Seismol Soc Am 84:935–953

    Google Scholar 

  • Kisslinger C (1996) Aftershocks and fault-zone properties. Adv Geophys 38:1–36

    Article  Google Scholar 

  • Kisslinger C, Jones LM (1991) Properties of aftershock sequences in southern California. J Geophys Res Solid Earth 96:11947–11958

    Article  Google Scholar 

  • Kulhanek O (2005) Seminar on b-value. Dept Geophys Charles Univ Prague 10–190

  • Le Pichon X, Chamot-Rooke N, Lallemant S et al (1995) Geodetic determination of the kinematics of central Greece with respect to Europe: implications for eastern Mediterranean tectonics. J Geophys Res Solid Earth 100:12675–12690

    Article  Google Scholar 

  • Le Pichon X, Kreemer C (2010) The Miocene-to-present kinematic evolution of the Eastern Mediterranean and Middle East and its implications for dynamics. Annu Rev Earth Planet Sci 38(1):323–351

    Article  Google Scholar 

  • Lin J, Stein RS (2004) Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. J Geophys Res Solid Earth 109:B02303. https://doi.org/10.1029/2003JB002607

    Article  Google Scholar 

  • Lin X, Hao J, Wang D et al (2021) Coseismic slip distribution of the 24 January 2020 M w 6.7 Doganyol earthquake and in relation to the foreshock and aftershock activities. Seismol Soc Am 92:127–139

    Google Scholar 

  • Ma J, Dong L, Zhao G, Li X (2018) Discrimination of seismic sources in an underground mine using full waveform inversion. Int J Rock Mech Min Sci 106:213–222

    Article  Google Scholar 

  • Ma J, Dong L, Zhao G, Li X (2019) Focal mechanism of mining-induced seismicity in fault zones: a case study of yongshaba mine in China. Rock Mech Rock Eng 52(9):3341–3352

    Article  Google Scholar 

  • McKenzie D (1976) The East Anatolian Fault: a major structure in eastern Turkey. Earth Planet Sci Lett 29:189–193

    Article  Google Scholar 

  • McKenzie D (1972) Active tectonics of the Mediterranean region. Geophys J Int 30:109–185

    Article  Google Scholar 

  • Melgar D, Ganas A, Taymaz T et al (2020) Rupture kinematics of 2020 January 24 Mw 6.7 Doganyol-Sivrice, Turkey earthquake on the East Anatolian Fault Zone imaged by space geodesy. Geophys J Int 223:862–874. https://doi.org/10.1093/gji/ggaa345

    Article  Google Scholar 

  • Mercier JL, Sorel D, Vergely P, Simeakis K (1989) Extensional tectonic regimes in the Aegean basins during the Cenozoic. Basin Res 2:49–71. https://doi.org/10.1111/j.1365-2117.1989.tb00026.x

    Article  Google Scholar 

  • Mogi K (1963) Magnitude-frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes (2nd paper). Bull Earthq Res Institute, Univ Tokyo 40:831–853

    Google Scholar 

  • MTA (2020) 24 January 2020 Sivrice (Elazig) earthquake field observation and evaluating Report

  • Narteau C, Byrdina S, Shebalin P, Schorlemmer D (2009) Common dependence on stress for the two fundamental laws of statistical seismology. Nature 462(7273):642–645

    Article  Google Scholar 

  • NGDC (2006). Two-minute gridded global relief data (ETOPO2) v2. National Geophysical Data Center (NGDC), NOAA, https://doi.org/10.7289/V5J1012Q.

  • Ogata Y, Imoto M, Katsura K (1991) 3-D spatial variation of b-values of magnitude-frequency distribution beneath the Kanto District, Japan. Geophys J Int 104:135–146

    Article  Google Scholar 

  • Ozer C (2021) 4-D tomographic change of V p and V p/V s structure before destructive earthquakes: a case study of the Sivrice-Elazig earthquake (mw= 6.8), Eastern Turkey. Nat Hazards 108:1901–1917

  • Ozer C, Gok E, Polat O (2018) Three-dimensional seismic velocity structure of the Aegean region of Turkey from local earthquake tomography. Ann Geophys 61:111

    Article  Google Scholar 

  • Ozer C, Ozyazicioglu M, Gok E, Polat O (2019) Imaging the crustal structure throughout the East Anatolian fault zone, Turkey, by local earthquake tomography. Pure Appl Geophys 176:2235–2261

    Article  Google Scholar 

  • Peng Z, Vidale JE, Ishii M, Helmstetter A (2007) Seismicity rate immediately before and after main shock rupture from high-frequency waveforms in Japan. J. Geophys Res Solid Earth 112:B03306

  • Polat O, Gok E, Yilmaz D (2008) Earthquake hazard of the Aegean extension region (West Turkey). Turkish J Earth Sci 17:593–614

    Google Scholar 

  • Pousse-Beltran L, Nissen E, Bergman EA et al (2020) The 2020 Mw 6.8 Elazig (Turkey) Earthquake reveals rupture behavior of the East Anatolian fault. Geophys Res Lett 47:e2020GL088136. https://doi.org/10.1029/2020GL088136

    Article  Google Scholar 

  • Ragon T, Simons M, Bletery Q, et al (2020) A stochastic view of the 2020 Elazig Mw6.8 earthquake (Turkey). Geophys Res Lett n/a:e2020GL090704. https://doi.org/10.1029/2020GL090704

  • Reilinger R, McClusky S, Vernant P, et al (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res Solid Earth 111B5

  • Sahin S, Oksum E (2021) The relation of seismic velocity and attenuation pattern in the East Anatolian fault zone with earthquake occurrence: example of January 24, 2020 Sivrice earthquake. Bull Miner Res Explor 164:1–26

    Google Scholar 

  • Scholz CH (1968) The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull Seismol Soc Am 58:399–415

    Article  Google Scholar 

  • Scholz CH (2015) On the stress dependence of the earthquake b value. Geophys Res Lett 42(5):1399–1402

    Article  Google Scholar 

  • Schorlemmer D, Wiemer S, Wyss M (2005) Variations in earthquake-size distribution across different stress regimes. Nature 437(7058):539–542

    Article  Google Scholar 

  • Sertcelik F (2012) Estimation of coda wave attenuation in the east Anatolia fault zone, Turkey. Pure Appl Geophys 169:1189–1204

    Article  Google Scholar 

  • Shcherbakov R, Turcotte DL (2004) A modified form of Bath’s law. Bull Seismol Soc Am 94:1968–1975

    Article  Google Scholar 

  • Shcherbakov R, Turcotte DL, Rundle JB (2006) Scaling properties of the Parkfield aftershock sequence. Seismol Soc Am Bull 96(4B):S376–S384

    Article  Google Scholar 

  • Simao NM, Nalbant SS, Sunbul F, Mutlu AK (2016) Central and eastern Anatolian crustal deformation rate and velocity fields derived from GPS and earthquake data. Earth Planet Sci Lett 433:89–98

    Article  Google Scholar 

  • Singh AP, Mishra OP, Kumar D et al (2012a) Spatial variation of the aftershock activity across the Kachchh Rift Basin and its seismotectonic implications. J Earth Syst Sci 121:439–451

    Article  Google Scholar 

  • Singh AP, Mishra OP, Yadav RBS, Kumar D (2012b) A new insight into crustal heterogeneity beneath the 2001 Bhuj earthquake region of northwest India and its implications for rupture initiations. J Asian Earth Sci 48:31–42

    Article  Google Scholar 

  • Smirnov VB, Kartseva TI, Ponomarev AV et al (2020) On the relationship between the Omori and Gutenberg-Richter parameters in aftershock sequences. Izv Phys Solid Earth 56(5):605–622

    Article  Google Scholar 

  • Stein RS (2004) Tidal triggering caught in the act. Science 305:1248–1249

    Article  Google Scholar 

  • Stein RS, King GCP, Lin J (1992) Change in failure stress on the southern San Andreas fault system caused by the 1992 magnitude= 7.4 Landers earthquake. Science 258:1328–1332

    Article  Google Scholar 

  • Stein RS, King GCP, Lin J (1994) Stress triggering of the 1994 M= 6.7 Northridge, California, earthquake by its predecessors. Science 265:1432–1435

    Article  Google Scholar 

  • Suyehiro S, Asada T, Ohtake M (1964) Foreshocks and aftershocks accompanying a perceptible earthquake in central Japan. Pap Met Geophys 15:71–88

    Article  Google Scholar 

  • Tang CC, Lin CH, Peng Z (2014) Spatial-temporal evolution of early aftershocks following the 2010 ML 6.4 Jiashian earthquake in southern Taiwan. Geophys J Int 199:1772–1783

    Article  Google Scholar 

  • Tatar O, Sozbilir H, Kocbulut F et al (2020) Surface deformations of 24 January 2020 Sivrice (Elazig)-Doganyol (Malatya) earthquake (Mw = 6.8) along the Puturge segment of the East Anatolian Fault Zone and its comparison with Turkey’s 100-year-surface ruptures. Mediterr Geosci Rev 2:385–410. https://doi.org/10.1007/s42990-020-00037-2

    Article  Google Scholar 

  • Taymaz T, Ganas A, Yolsal-Cevikbilen S et al (2021) Source mechanism and rupture process of the 24 January 2020 Mw 67 Doganyol-Sivrice earthquake obtained from seismological waveform analysis and space geodetic observations on the East Anatolian fault zone (Turkey). Tectonophysics 804:228745. https://doi.org/10.1016/j.tecto.2021.228745

    Article  Google Scholar 

  • Telesca L, Cuomo V, Lapenna V et al (2001) Analysis of the temporal properties of Greek aftershock sequences. Tectonophysics 341:163–178

    Article  Google Scholar 

  • Toda S, Stein RS, Reasenberg PA et al (1998) Stress transferred by the 1995 Mw = 6.9 Kobe, Japan, shock: effect on aftershocks and future earthquake probabilities. J Geophys Res Solid Earth 103:24543–24565. https://doi.org/10.1029/98JB00765

    Article  Google Scholar 

  • Turan M (1993) Elazig yakin civarindaki bazi onemli tektonik yapilar ve bunlarin bolgenin jeolojik evrimindeki yeri (in Turkish). Suat Erk Jeol Sempozyumu, Ankara 193–204

  • Turkoglu E, Unsworth M, Bulut F, Caglar I (2015) Crustal structure of the North Anatolian and East Anatolian fault systems from magnetotelluric data. Phys Earth Planet Inter 241:1–14

    Article  Google Scholar 

  • Udias A, Mezcua J (1997) Fundamentos de geofísica. Alianza Editorial, Madrid

    Google Scholar 

  • Utsu T (1970) Aftershocks and earthquake statistics (1): some parameters which characterize an aftershock sequence and their interrelations. J Fac Sci Hokkaido Univ Ser 7. Geophys 3:129–195

    Google Scholar 

  • Utsu T, Ogata Y, Matsu’ura R (1995) The centenary of the Omori formula for a decay law of aftershock activity. J Phys Earth 43:1–33

    Article  Google Scholar 

  • Utsu T (2002) Statistical features of seismicity. Int Geophys Ser 81(A):719–732

    Article  Google Scholar 

  • USGS (1997). Earth resources observation and science center/U.S. Geological Survey/U.S. Department of the Interior. USGS 30 ARC-second Global Elevation Data, GTOPO30. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory

  • Vanacore EA, Taymaz T, Saygin E (2013) Moho structure of the Anatolian Plate from receiver function analysis. Geophys J Int 193:329–337

    Article  Google Scholar 

  • Warren NW, Latham GV (1970) An experimental study of thermally induced microfracturing and its relation to volcanic seismicity. J Geophys Res 75:4455–4464

    Article  Google Scholar 

  • Wessel P, Smith WHF, Scharroo R, Luis JF, Wobbe F (2013) Generic mapping tools: improved version released. EOS Trans Am Geophys Union 94:409–410

    Article  Google Scholar 

  • Wiemer S, Wyss M (2002) Spatial and temporal variability of the b-value in seismogenic volumes: an overview. Adv Geophys 45:259–302

    Article  Google Scholar 

  • Wiemer S (2001) A software package to analyze seismicity: ZMAP. Seismol Res Lett 72:373–382

    Article  Google Scholar 

  • Wiemer S, Katsumata K (1999) Spatial variability of seismicity parameters in aftershock zones. J Geophys Res Solid Earth 104:13135–13151

    Article  Google Scholar 

  • Wiemer S, Wyss M (1997) Mapping the frequency-magnitude distribution in asperities: an improved technique to calculate recurrence times? J Geophys Res Solid Earth 102:15115–15128

    Article  Google Scholar 

  • Wu YM, Chen SK, Huang TC, Huang HH, Chao WA, Koulakov I (2018) Relationship between earthquake b-values and crustal stresses in a young orogenic belt. Geophys Res Lett 45(4):1832–1837

    Article  Google Scholar 

  • Wyss M (1973) Towards a physical understanding of the earthquake frequency distribution. Geophys J R Astron Soc 31:341–359

    Article  Google Scholar 

  • Xu J, Liu C, Xiong X (2020) Source process of the 24 January 2020 Mw 6.7 East Anatolian Fault Zone, Turkey. Earthquake Seismol Res Lett 91:3120–3128. https://doi.org/10.1785/0220200124

    Article  Google Scholar 

  • Yadav RBS, Papadimitriou EE, Karakostas VG et al (2011) The 2007 Talala, Saurashtra, western India earthquake sequence: tectonic implications and seismicity triggering. J Asian Earth Sci 40:303–314

    Article  Google Scholar 

  • Yadav RBS, Gahalaut VK, Chopra S, Shan B (2012) Tectonic implications and seismicity triggering during the 2008 Baluchistan, Pakistan earthquake sequence. J Asian Earth Sci 45:167–178

    Article  Google Scholar 

  • Yolsal-Cevikbilen S, Biryol CB, Beck S et al (2012) 3-D crustal structure along the North Anatolian fault zone in north-central Anatolia revealed by local earthquake tomography. Geophys J Int 188:819–849

    Article  Google Scholar 

  • Ziv A, Rubin AM (2000) Static stress transfer and earthquake triggering: no lower threshold in sight? J Geophys Res Solid Earth 105:13631–13642

    Article  Google Scholar 

Download references

Acknowledgements

The data is provided by Ataturk University Earthquake Research Center and Earthquake Department of the Disaster and Emergency Management Authority (AFAD) (Ankara-Turkey). Some images are created using GMT (Wessel et al. 2013). Faults are digitized in the Geoscience map viewer and drawing editor licensed to the General Directorate of Mineral Research and Exploration (MTA) (Emre et al. 2013; 2018). The Coulomb stress modeling in this study has been performed using Coulomb 3.3 software (https://earthquake.usgs.gov/research/software/coulomb/). The authors would also thank Prof. Dr. Stefan Wiemer for providing ZMAP software. High-resolution topography and bathymetry data sets have been compiled from NOAA National Geophysical Data Center (NGDC 2006) and Digital Elevation Model from United States Geological Survey (USGS 1997). We special thank the helpful suggestions by Editor-in-Chief Abdullah M. Al-Amri and anonymous reviewers to improve the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. The earthquake data was prepared by E. Bayrak and C. Ozer. The Zmap software was used by E. Bayrak. The Coulomb software was used by E. Bayrak and C. Ozer. The Generic Mapping Tools software was used by C. Ozer. The first draft of the manuscript was written by E. Bayrak and C. Ozer, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Erdem Bayrak.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Longjun Dong

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayrak, E., Ozer, C. The 24 January 2020 (Mw 6.8) Sivrice (Elazig, Turkey) earthquake: a first look at spatiotemporal distribution and triggering of aftershocks. Arab J Geosci 14, 2445 (2021). https://doi.org/10.1007/s12517-021-08756-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-08756-y

Keywords

Navigation