Skip to main content

Advertisement

Log in

Composition, quality, and certification of some Tunisian thermal muds used in pelotherapy

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The aim of this study is to characterize and evaluate the suitability and the quality criteria of two Tunisian peloids taken from the medical thermal stations of Jebel El Oust (JOp) and Korbous (Kp) in northeastern of Tunisia. These peloids are used for the treatment of dermatological pathologies, muscle and bone traumas, and rheumatic pathologies. Their mineralogical and chemical composition was determined respectively by means of X-ray “powder and aggregate” diffraction (XRD) and X-ray fluorescence (XRF) data. Scanning electron microscopy (SEM) and grain size distribution were also carried out for the same purpose. On the other hand, quality, purity, and stability of these thermal muds were evaluated using pharmacotechnical tests (BET surface area, pH, plasticity index, cooling kinetic rate, and CEC). Furthermore, these peloids were compared to those of the Dax thermal station (TERDAX) in France and the natural Tunisian peloids of Kalaa Sghira (Ka).

In fact, the mineralogical composition of the Tunisian thermal mud is dominated by illite and kaolinite while the natural and commercial peloids are more heterogeneous as they are made up of various clay minerals, quartz, feldspars, and accessories. In the natural peloids, relatively large quantities of quartz preclude their uncontrolled manipulation.

In terms of chemical composition, mainly trace elements, such as those considered to be toxic (Pb and As). The Plomb has been detected only in TERDAX but in much higher concentration (34 ppm) than the necessary limits, while Arsenic was contained in the highest concentration in the TERDAX, Kp, and Ka (112 ppm) samples but not in the K0 or Jebel El Oust samples. Therefore, according to these results and with respect to several parameters traditionally used in pelotherapy, it is possible to conclude that the Tunisian peloids (JOp) are well prepared for an external use whereas with the other peloids, a special attention must be paid to the presence of toxic elements and quartz, which could represent a hindrance for their possible use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Antúnez LE, Puértolas BC, Burgos BI, Payán JMP, Piles STT (2013) Effects of mud therapy on perceived pain and quality of life related to health in patients with knee osteoarthritis. Reumatología Clínica (english Edition) 9(3):156–160

    Article  Google Scholar 

  • Awad ME, López-Galindo A, Sánchez-Espejo R, El-Rahmany MM, Iborra CV (2018) Thermal properties of some Egyptian kaolin pastes for pelotherapeutic applications: influence of particle geometry on thermal dosage release. Appl Clay Sci 160:193–200

    Article  Google Scholar 

  • Awad ME, Lopez-Galindo A, Setti M, El-Rahmany MM, Iborra CV (2017) Kaolinite in pharmaceutics and biomedicine. Int J Pharm 533(1):34–48

    Article  Google Scholar 

  • Bell FG (2002) The geotechnical properties of some till deposits occurring along the coastal areas of eastern England. Eng Geol 63(1–2):49–68

    Article  Google Scholar 

  • Ben Dhia H (1983) Les provinces géothermiques en Tunisie. Potentialités géothermiques de la Tunisie méridionale. Thèse, Université de Bordeaux, p 169

    Google Scholar 

  • Bonnot-Courtois CJRN, Jaffrezic-Renault N (1982) Etude des échanges entre terres rares et cations interfoliaires de deux argiles. Clay Miner 17(4):409–420

    Article  Google Scholar 

  • Burille J (2006) Influence de la formation sur l’identité professionnelle et sur les pratiques des hydrothérapeutes dans les stations thermales françaises. Master Professionnel Education et Formation. Aix-Marseille I 99

  • Carla Marina B, Fernando R, Ângela C, Denise T, Cristina S, Paula T (2020) Assessment of clayey peloid formulations prior to clinical use in equine rehabilitation. Int J Environ Res Public Health 17:3365. https://doi.org/10.3390/ijerph17103365

    Article  Google Scholar 

  • Cara S, Carcangiu G, Padalino G, Palomba M, Tamanini M (2000) The bentonites in pelotherapy: chemical, mineralogical and technological properties of materials from Sardinia deposits Italy. Appl Clay Sci 16:117–124

    Article  Google Scholar 

  • Carretero MI, Gomes CSF, Tateo F (2006) Clays and human health. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science, Developments in Clay Science, vol 1. Elsevier, Amsterdam, pp 717–741

    Chapter  Google Scholar 

  • Carretero MI, Pozo M, Sánchez C, García FJ, Medina JA, Bernabé JM (2007) Comparison of saponite and montmorillonite behaviour during static and stirring maturation with seawater for pelotherapy. Appl Clay Sci 36(1–3):161–173

    Article  Google Scholar 

  • Carretero MI (2020) Clays in pelotherapy. A review. Part II: Organic compounds, microbiology and medical applications. Appl Clay Sci. 189:105531

    Article  Google Scholar 

  • Carretero MI (2020) Clays in pelotherapy. A review. Part I: Mineralogy, chemistry, physical and physicochemical properties. Applied Clay Science 189:105526

    Article  Google Scholar 

  • Casás LM, Pozo M, Gómez CP, Pozo E, Bessières LD, Plantier F, Legido JL (2013) Thermal behavior of mixtures of bentonitic clay and saline solutions. Appl Clay Sci 72:18–25

    Article  Google Scholar 

  • Davinelli S, Bassetto F, Vitale M & Scapagnini G (2019) Thermal waters and the hormetic effects of hydrogen sulfide on inflammatory arthritis and wound healing. In The Science of Hormesis in Health and Longevity . Academic Press: 121–126

  • Díaz Rizo O, Suárez Muñoz M, González Hernández P, Gelen Rudnikas A, D’Alessandro Rodríguez K, Melián Rodríguez C M & Martínez-Villegas N V (2017) Assessment of heavy metal content in peloids from some Cuban spas using X-ray fluorescence. Nucleus (61).

  • EMEA (2008) Guideline on the specification limits for residual metal catalysts for metal reagents. Available at: www.emea.europa.eu/pdfs/human/swp/444600enfin.pdf. Accessed Mar 2010

  • European Pharmacopoeia (2008) 6th edition, Strasbourg: Council of Europe.

  • Fernández-González MV, Martín-García JM, Delgado G, Párraga J, Carretero MI, Delgado R (2017) Physical properties of peloids prepared with medicinal mineral waters from Lanjarón Spa (Granada, Spain). Appl Clay Sci 135:465–474

    Article  Google Scholar 

  • Ferrand T, Yvon J (1991) Thermal properties of clay pastes for pelotherapy. Appl Clay Sci 6:21–38

    Article  Google Scholar 

  • Gámiz E, Martín-García JM, Fernández-González MV, Delgado G, Delgado R (2009) Influence of water type and maturation time on the properties of kaolinite–saponite peloids. Appl Clay Sci 46:117–123

    Article  Google Scholar 

  • García-Villén F, Sánchez-Espejo R, Borrego-Sánchez A, Cerezo P, Perioli & Viseras C (2020) Safety of nanoclay/spring water hydrogels: assessment and mobility of hazardous elements. Pharmaceutics, 12(8): 764

  • García-Villén F, Sánchez-Espejo R, Carazo E, Borrego-Sánchez A, Aguzzi C, Cerezo P, Viseras C (2018) Characterisation of Andalusian peats for skin health care formulations. Appl Clay Sci 160:201–205

    Article  Google Scholar 

  • Glavaš N, Mourelle ML, Gómez CP, Legido JL, Šmuc NR, Dolenec M, Kovač N (2017) The mineralogical, geochemical, and thermophysical characterization of healing saline mud for use in pelotherapy. Appl Clay Sci 135:119–128

    Article  Google Scholar 

  • Gomes C, Silva J (2007) Minerals and clay minerals in medical geology. Appl Clay Sci 36(1–3):4–21

    Article  Google Scholar 

  • Gomes C, Carretero MI, Pozo M, Maraver F, Cantista P, Armijo F, Legido JL, Teixeira F, Rautureau M, Delgado R (2013) Peloids and pelotherapy: historical evolution, classification and glossary. Appl Clay Sci 75–76:28–38

    Article  Google Scholar 

  • Hajjaji W, Hachani M, Moussi B, Jeridi K, Medhioub M, López-Galindo A, Rocha R, Labrincha JA, Jamoussi F (2010) Mineralogy and plasticity in clay sediments from north-east Tunisia. J Afr Earth Sc 57:41–46

    Article  Google Scholar 

  • Hang PT, Brindley GW (1970) Methylene blue absorption by clay minerals Determination of surface areas and cation exchange capacities (clay-organic studies XVIII). Clays and clay minerals 18(4):203–212

    Article  Google Scholar 

  • Health Canada (2009) Draft guidance on heavy metal impurities in cosmetics-Canada. Available online: https://www.canada.ca/en/health-canada/services/consumer-product-safety/reports-publications/industry-professionals/guidance-heavy-metal-impurities-cosmetics.html. Accessed 3 May 2018

  • Hernández AC, Sánchez-Espejo R, Meléndez W, González G, López-Galindo A, Viseras C (2019) Characterization of Venezuelan kaolins as health care ingredients. Appl Clay Sci 175:30–39

    Article  Google Scholar 

  • Iannuccelli V, Maretti E, Sacchetti F, Romagnoli M, Bellini A, Truzzi E, Leo E (2016) Characterization of natural clays from Italian deposits with focus on elemental composition and exchange estimated by EDX analysis: potential pharmaceutical and cosmetic uses. Clays Clay Miner 64(6):719–731

    Article  Google Scholar 

  • IARC (2012) Silica dust, crystalline, in the form of quartz or cristobalite. A review of human carcinogens: arsenic, metals, fibres, and dusts. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. vol. 100C.

  • Kahr G, Madsen FT (1995) Determination of the cation exchange capacity and the surface area of bentonite, illite and kaolinite by methylene blue adsorption. Appl Clay Sci 9(5):327–336

    Article  Google Scholar 

  • Kamitsou MD, Sygouni V, Kanellopoulou DG, Gardikis K, Koutsoukos PG (2018) Physicochemical characterization of sterilized muds for pharmaceutics/cosmetics applications. Environ Geochem Health 40(4):1449–1464

    Article  Google Scholar 

  • Karakaya MÇ, Karakaya N (2018) Chemical composition and suitability of some Turkish thermal muds as peloids. Turkish Journal of Earth Sciences 27(3):191–204

    Google Scholar 

  • Khiari I, Mefteh S, Sánchez-Espejo R, Cerezo P, Aguzzi C, López-Galindo A, Iborra CV (2014) Study of traditional Tunisian medina clays used in therapeutic and cosmetic mud-packs. Appl Clay Sci 101:141–148

    Article  Google Scholar 

  • Knorst-Fouran A, Casás LM, Legido JL, Coussine C, Bessières D, Plantier F, Lagière J, Dubourg K (2012) Influence of dilution on the thermophysical properties of Dax peloid (TERDAX®). Thermochim Acta 539:34–38

    Article  Google Scholar 

  • Koning A, Comans RN (2004) Reversibility of radiocaesium sorption on illite. Geochim Cosmochim Acta 68(13):2815–2823

    Article  Google Scholar 

  • L C P C (1987) Limites d’Atterberg- limites de liquidité- limite de plasticité. Méthode d’essai. LPC n° 19. Publication LCPC : 26

  • Legido JL, Medina C, Mourelle ML, Carretero MI, Pozo M (2007) Comparative study of the cooling rates of bentonite, sepiolite and common clays for their use in pelotherapy. Appl Clay Sci 36(1–3):148–160

    Article  Google Scholar 

  • López-Galindo A, Torres-Ruiz J, González-López JM (1996) Mineral quantification insepiolite–palygorskite deposits using X-ray diffraction and chemical data. Clay Miner 31:224–227

    Google Scholar 

  • Margaret S M, Nadia M V, Patricia G H & Rodríguez M (2018) Physicochemical characterization, elemental speciation and hydrogeochemical modeling of santa lucía peloid used for therapeutic uses. In 6th International Symposium on Sediment Management San Cristóbal de Las Casas, Chiapas, Mexico June 19–23: 105

  • Martín-Ramos JD (2004) X-Powder, a software package for powder X-ray diffraction analysis. Legal Deposit G.R.1001/04. http://www.xpowder.com. Accessed 20 Dec 2013

  • Martínez-Villegas N, Muñoz MS, González-Hernández P, Rodríguez CM, Cossio JB, Díaz RH, Rizo OD (2020) Inorganic and organic characterization of Santa Lucía salt mine peloid for quality evaluations. Environ Sci Pollut Res 27(14):15944–15958

    Article  Google Scholar 

  • Marsigli M, Dondi M (1997) Plasticità delle argille italiane per laterizi e previsione del loro comportamento in foggiatura. L’Industria dei Laterizi 46, (in Italian): 214–222.

  • Morganti P, Agostini G, Fabrizi G (2001) The cosmetic use of an ancient peat of thermal origin. J Appl Cosmetol 19:21–30

    Google Scholar 

  • Novelli G (1996) Applicazioni medicali e igieniche delle bentoniti. Atti Convegno “Argille Curative”Salice Terme PV Italy., Oct. 1996. Tipografia Trabella, Milano.

  • Pozo M, Carretero MI, Maraver F, Pozo E, Gomez I, Armijo F, Rubi JAM (2013) Composition and physico-chemical properties of peloids used in Spanish spas: a comparative study. Appl Clay Sci 83–84:270–279

    Article  Google Scholar 

  • Rebelo M, Viseras C, López-Galindo A, Rocha F, Ferreira da Silva E (2011) Rheological and thermal characterization of peloids made of selected Portuguese geological materials. Appl Clay Sci 52:219–227

    Article  Google Scholar 

  • Quintela A, Terroso D, Da Silva EF, Rocha F (2012) Certification and quality criteria of peloids used for therapeutic purposes. Clay Miner 47(4):441–451

    Article  Google Scholar 

  • Rizo OD, Muñoz MS, Hernández PG, Rudnikas AG, Rodríguez CMM, Castillo JRF, Zerquera JT (2018) Radioactivity levels in peloids used in main Cuban spas. J Radioanal Nucl Chem 316(1):95–99

    Article  Google Scholar 

  • Rowe RC, Sheskey PJ, Quinn ME (2009) Handbook of pharmaceutical excipients, 6th edn. Pharmaceutical Press and American Pharmacists Association, American Pharmacists Association, Washington, USA

    Google Scholar 

  • Sala G H, Tessier D (1994) Water retention by clayey materials: significance and prediction. C.R. Acad. Sci. Paris 318/II: 381– 388.

  • Sanchez CJ, Parras J, Carratero MI (2002) The effect of maturation upon the mineralogical and physicochemical properties of illitic –smectitic clays for pelotherapy. Clay Miner 37:457–464

    Article  Google Scholar 

  • Sánchez-Espejo R, Aguzzi C, Cerezo P, Salcedo I, Lopez-Galindo A, Viseras C (2014) Folk pharmaceutical formulations in western Mediterranean: identification and safety of clays used in pelotherapy. J Ethnopharmacol 155:810–814

    Article  Google Scholar 

  • Sofianska E, Athanassoulis C, Tarenidis D, Xirokostas N, Gaga M (2019) Textural, Mineralogical and Geochemical Assessment of the Pikrolimni Lake Sediments (Kilkis District, Northern Greece) and Suitability for use in Pelotherapy. Bulletin of the Geological Society of Greece 55(1):170–184

    Article  Google Scholar 

  • Summa V, Tateo F (1998) The use of pelitic raw materials in thermal centres: mineralogy, geochemistry, grain-size and leaching tests. Examples from Lucania area (southern Italy). Appl Clay Sci 12:403–417

    Article  Google Scholar 

  • Tateo T, Summa V (2007) Element mobility in clays for healing use. Appl Clay Sci 36:64–76

    Article  Google Scholar 

  • Tateo F, Ravaglioli A, Andreoli C, Bonina F, Coiro V, Degetto S, Giaretta A, Menconi Orsini A, Puglia C, Summa V (2009) The in-vitro percutaneous migration of chemical elements from a thermal mud for healing use. Appl Clay Sci 44:83–94

    Article  Google Scholar 

  • Torrecilha J K (2019) Bentonite and Montmorillonite maturation with Águas de Lindóia, Peruíbe and Poços de Caldas waters. Brazilian Journal of Radiation Sciences, 7(2A).

  • Tran NL (1977) Un nouvel essai d’identification des sols: l’essai au bleu de méthylène. Bulletin De Liaison Des Laboratoires Des Ponts Et Chaussées 88:136–137

    Google Scholar 

  • Tserenkhand B, Badnainyambuu Z, Erdenechimeg G, Bolormaa O (2018) Composition of water and peloid from lake buuntsagaan and element acummulation of peloid. J Chem Technol Metallurgy 53(2):258–266

    Google Scholar 

  • Undabeytia T, Nir S, Rytwo G, Morillo E, Maqueda C (1998) Modeling adsorption-desorption processes of Cd on montmorillonite. Clays Clay Miner 46(4):423–428

    Article  Google Scholar 

  • United States Pharmacopeia 32 (2009) National Formulary 27, Rockville, MD: United States Pharmacopeial Convention.

  • United States Pharmacopoeia 33 (2010) National Formulary 28, Rockville, MD: United States Pharmacopoeial Convention.

  • Veniale F, Setti M (1996) L’argilla di Pontestura _AL.. Potenzialit’a d’impiego nella formu-lazione di fanghi peloidi. Atti Conv. “Argille curative”, Salice Terme _PV: 139–145.

  • Veniale F, Setti M, Soggetti F, Lofrano M, Troilo F (1999) Aging experiments on clayey geomaterials with sulphurous mud and bromo-iodine brine for the treatment of rheumatism and skin diseases. Mineralogica et Petrographica Acta XLII : 267–275.

  • Veniale F, Barberis E, Carcangiu G, Morandi N, Setti M, Tamanini M, Tessier D (2004) Formulation of muds for pelotherapy: effects of “maturation” by different mineral waters. Appl Clay Sci 25:135–148

    Article  Google Scholar 

  • Veniale F, Bettero A, Jobstraibizer PG, Setti M (2007) Thermal muds: perspectives of innovations. Appl Clay Sci 36:141–147

    Article  Google Scholar 

  • Viseras C, Lopez-Galindo A (1999) Pharmaceutical applications of some Spanish clays (sepiolite, palygorskite, bentonite): some preformulation studies. Appl Clay Sci 14:69–82

    Article  Google Scholar 

  • Viseras C, Cerezo P (2006) Aplicación de peloides y fangos termales. In: Hernandez Torres, A., et al. (Ed.), Tecnicas y Tecnologías en Hidrología Médica e Hidroterapia. Agencia de Evaluación de Tecnologías Sanitarias, Instituto de Salud Carlos III, Ministerio de Salud y Consumo, Madrid : 141–146.

  • Viseras C, Aguzzi C, Cerezo P, Lopez-Galindo A (2007) Uses of clay minerals in semisolid health care and therapeutic products. Appl Clay Sci 36:37–50

    Article  Google Scholar 

  • Viseras C, Carazo E, Borrego-Sánchez A, García-Villén F, Sánchez-Espejo R, Cerezo P, Aguzzi C (2019) Clay minerals in skin drug delivery. Clays Clay Miner 67(1):59–71

    Article  Google Scholar 

  • Xiangke W, Wenming D, Xiongxin D, Aixia W, Jinzhou D, Zuyi T (2000) Sorption and desorption of Eu and Yb on alumina: mechanisms and effect of fulvic acid. Appl Radiat Isot 52(2):165–173

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the all workers in the thermal station of Jebel El Oust, Korbous, and the Dax thermal center for kindly providing us with the peloids and raw materials used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mounir Medhioub.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Domenico M. Doronzo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mefteh, S., Medhioub, M. Composition, quality, and certification of some Tunisian thermal muds used in pelotherapy. Arab J Geosci 14, 2140 (2021). https://doi.org/10.1007/s12517-021-08532-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-08532-y

Keywords

Navigation