Skip to main content
Log in

Mineralogy, fluid evolution, geochemical characteristics in two types of sphalerite and genesis of the Tarz Zn–Pb deposit, Iran

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Tarz Zn–Pb deposit is located in the Tabas block of the Central Iranian Microcontinent and consists of stratabound orebodies hosted by dolomitic limestone of the Middle Triassic Shotori Formation. Two stages of sphalerite were identified in the Tarz deposit: dark brown sphalerite formed in early stage and light brown sphalerite represented a later stage. The concentrations of minor and trace elements in sphalerite and fluid inclusions within calcite coexisting with the two stages of sphalerite were analyzed to identify the mineralization conditions and the genesis. Early-stage sphalerite compared to late-stage sphalerite has higher Fe, Mn, and Cu contents but lower Cd, Sb, and Ag contents. In addition, trace element concentrations in two types of sphalerite show that the approximate temperature of ore-forming fluids gradually decreases from the early stage to the late stage. This finding is consistent with the results of the microthermometric analyses of the fluid inclusions, which yield homogenization temperatures from 165 to 207 °C in calcite associated to stage I sphalerite and 106 to 173 °C in calcite associated to stage II sphalerite. The low Zn/Cd ratios and high Cd/Fe ratios especially for stage II sphalerite are consistent with Mississippi Valley Type (MVT) ore deposits but are different from deposits related to magmatism such as epithermal, skarn, and volcanogenic massive sulfide (VMS) deposits. Based on ore textures, geochemical compositions of sphalerite, and the results of the microthermometric analyses of the fluid inclusions, the mineralization process in the Tarz deposit was closely related to basin brines and faulting in the Tarz region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Agard A, Omrani J, Jolivet L, Mouthereau F (2005) Convergence history across Zagros (Iran): constrains from collisional and earlier deformation. Int J Earth Sci 94:401–419

    Article  Google Scholar 

  • Aghanabati A (2004) Geology of Iran. Geological Survey of Iran, Tehran

    Google Scholar 

  • Alavi M (1991) Tectonic map of the Middle East, Scale 1/5,000,000. Geological Survey of Iran

    Google Scholar 

  • Alimolaei M, Aminzadeh B (2019) Geochemical properties of major and rare earth elements in the South Kouchek-Ali Coal Mine, Tabas. J Econ Geol 11(2):321–337

    Google Scholar 

  • Aminzadeh B (2019) Mineralization and fluid inclusion studies in the Tarz carbonate-hosted Pb-Zn deposit, Central Iran. J Econ Geol 11(3):387–401

    Google Scholar 

  • Amiri A (2007) The geological and geochemical characteristics and genesis of the carbonate-hosted zinc-lead deposits in the Ravar-Bafgh area. Ph.D. thesis, Islamic Azad University, Science and Research Branch, Tehran

  • Amiri A, Rassa I, Khakzad A, Adabi MH (2009) Thermometry and formation model of carbonate-hosted zn-Pb sulfide deposits in the Ravar-Bafgh area based on sulfur stable isotopes. Geosciences 18:3–10

    Google Scholar 

  • Arjmandzadeh R, Karimpour MH, Mazaheri SA, Santos JF, Medina JM, Homam SM (2011) Sr–Nd isotope geochemistry and petrogenesis of the Chah- Shaljami granitoids (Lut block, eastern Iran). J Asian Earth Sci 41:283–296

    Article  Google Scholar 

  • Awadh SM (2009) Iron content variations in sphalerite and their effects on reflectance and internal reflections under reflected light. Arab J Geosci 2:139–142

    Article  Google Scholar 

  • Bagheri S, Stampfli GM (2008) The anarak, Jandagh and Posht-e-badam metamorphic complexes in central Iran: new geological data, relationships and tectonic implications. Tectonophysics 451:123–155

    Article  Google Scholar 

  • Basuki NI, Taylor BE, Spooner ETC (2008) Sulfur isotope evidence for thermochemical reduction of dissolved sulfate in Mississippi Valley type zinc–lead mineralization, Bongara area, northern Peru. Econ Geol 103:183–799

    Article  Google Scholar 

  • Bauer ME, Burisch M, Ostendorf J, Krause J, Frenzel M, Seifert T, Gutzmer J (2019) Trace element geochemistry of sphalerite in contrasting hydrothermal fluid systems of the Freiberg district, Germany: insights from LA-ICP-MS analysis, near-infrared light microthermometry of sphalerite-hosted fluid inclusions, and sulphur isotope geochemistry. Miner Deposita 54:237–262

    Article  Google Scholar 

  • Belissont R, Munoz M, Boiron MC, Luais B, Mathon O (2016) Distribution and oxidation state of Ge, Cu and Fe in sphalerite by μ-XRF and K-edge μ-XANES: insights into Ge incorporation, partitioning and isotopic fractionation. Geochim Cosmochim Acta 177:298–314

    Article  Google Scholar 

  • Berberian M (1981) Active faulting and tectonics of Iran. In: Gupta, H.K., Delany, F.M. (Eds.), Zagros-Hindu Kush Himalaya geodynamic evolution. American Geophysical Union Geodynamic Series 3: 33–69.

  • Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265

    Article  Google Scholar 

  • Bernardini GP, Borgheresi M, Cipriani C, Di Benedetto F, Romanelli M (2004) Mn distribution in sphalerite: an EPR study. Phys Chem Miner 31(2):80–84

    Article  Google Scholar 

  • Bernstein LR (1985) Germanium geochemistry and mineralogy. Geochem. Cosmochim. Acta 49:2409–2422

    Article  Google Scholar 

  • Bodnar RJ (1993) Revised equation and table for determining the freezing point depression of H2O\NaCl solutions. Geochim Cosmochim. Acta 57:683–684

    Article  Google Scholar 

  • Brown PE, Lamb WM (1989) P-V-T properties of fluids in the system H2O ± CO2 ± NaCl: new graphic presentations and implications for fluid inclusion studies. Geochim Cosmochim Acta 53:1209–1221

    Article  Google Scholar 

  • Brunet MF,Wilmsen M, Granath JW (2009) South Caspian to Central Iran Basins: The Geological Society Special Publications, London

  • Cao HW, Zhang ST, Zheng L, Liu RP, Tian HH, Zhang XH, Li JJ (2014) Geochemical characteristics of trace element of sphalerite in the Zhongyuku (Pb)-Zn deposit of the Luanchuan, southwest of China. Kuangwu Yanshi/ Journal of Mineralogy and Petrology (In Chinese with English Abstract) 34(3):50–59

    Google Scholar 

  • Carillo-Rosua J, Morales-Ruano S, Hach-Ali PF (2008) Textural and chemical features of sphalerite from the Palai-Islica deposit (SE Spain): implications for ore genesis and color. J Mineral Geochem 185:63–78

    Google Scholar 

  • Cook NJ, Ciobanu CL, Pring A, Skinner W, Shimizu M, Danyushevsky L, Saini-Eidukat B (2009) Trace and minor elements in sphalerite: a LA–ICP–MS study. Geochim. Cosmochim. Acta 73:4761–4791

    Article  Google Scholar 

  • Cooke DR, McPhail DC (2001) Epithermal Au\\Ag\\Te mineralization, Acupan, Baguio district, Philippines: numerical simulations of mineral deposition. Econ Geol 96:109–131

    Google Scholar 

  • Czamanske GK (1974) The FeS content of sphalerite along the chalcopyrite–pyrite–bornite sulfur fugacity buffer. Econ Geol 69:1328–1334

    Article  Google Scholar 

  • Ehya F (2014) The Paleozoic Ozbak-Kuh carbonate-hosted Pb\Zn deposit of East Central Iran: isotope (C, O, S, Pb) geochemistry and ore genesis. Mineral Petrol 108:123–136

    Article  Google Scholar 

  • Evans AM (1993) Ore geology and industrial minerals: an introduction. Blackwell Scientific Publication 390

  • Fan HR, Hu FF, Wilde SA, Yang KF, Jin CW (2011) The Qiyugou gold-bearing breccia pipes, Xiong’ershan region, central China: fluid-inclusion and stable-isotope evidence for an origin from magmatic fluids. Int Geol Rev 53:25–45

    Article  Google Scholar 

  • Förster H, Jafarzadeh A (1994) The Bafq mining district in central Iran; a highly mineralized Infracambrian volcanic field. Econ Geol 89(8):1697–1721

    Article  Google Scholar 

  • Frenzel M, Hirsch T, Gutzmer J (2015) Concentration of Ga, Ge, In and Fe in sphalerite as a function of deposit type-A meta-analysis. 13th SGA Biennial Meeting: mineral Resources in a Sustainable World 2:671–674

    Google Scholar 

  • Frenzel M, Hirsch T, Gutzmer J (2016) Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type-A meta-analysis. Ore Geol Rev 76:52–78

    Article  Google Scholar 

  • Ghasemi A, Talbot CJ (2006) A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). J Asian Earth Sci 26:683–693

    Article  Google Scholar 

  • Ghorbani M, Tajbakhsh P, Khoie N (2000) Lead and zinc deposits in Iran. GSI Book 512

  • Gottesmann W, Kampe A (2007) Zn/Cd ratios in calcsilicate-hosted sphalerite ores at Tumurtijn-ovoo Mongolia. Chem Erde 67:323–328

    Article  Google Scholar 

  • Gottesmann W, Gottesmann B, Seifert W (2009) Sphalerite composition and ore genesis at the Tumurtjin-ovoo Fe–Mn–Zn skarn deposit, Mongolia, Neues Jahrbuch für Mineral Abhandlungen. J Mineral Geochim 185:249–280

    Google Scholar 

  • Gu L, Wu C, Zhang Z, Pirajno FNP, Chen P, Xiao X (2011) Comparative study of ore-forming fluids of hydrothermal copper-gold deposits in the lower Yangtze River Valley, China. Int Geol Rev 53:477–498

    Article  Google Scholar 

  • Hosseini-Dinani H, Aftabi A (2016) Vertical lithogeochemical halos and zoning vectors at Goushfil Zn–Pb deposit, Irankuh district, southwestern Isfahan, Iran: implications for concealed ore exploration and genetic models. Ore Geol Rev 72:1004–1021

    Article  Google Scholar 

  • Hukeride R, Kürsten M, Venzlaff H (1962) Zur geologie des gebiets zwischen Kerman und Saghand (Iran). Beihefte zum Geologischen Jahrbuch, Hannover, Report 51, 197 pp.

  • Johan Z (1988) Indium and germanium in the structure of sphalerite: an example of coupled substitution with copper. Mineral Petrol 39:211–229

    Article  Google Scholar 

  • Karimpour MH, Malekzadeh Shafaroudi A, Stern CR, Farmer L (2012) Petrogenesis of Granitoids, U–Pb zircon geochronology, Sr–Nd isotopic characteristic, and important occurrence of Tertiary mineralization within the Lut Block, eastern Iran. J Econ Geol 4:1–27

    Google Scholar 

  • Kashfi MS (1976) Plate tectonics and structural evolution of the Zagros geosyncline, southwestern Iran. Geol Soc Am Bull 87:1487–1491

    Article  Google Scholar 

  • Keith M, Haase KM, Schwarz-Schampera U, Klemd R, Petersen S, Bach W (2014) Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents. Geology 42:699–702

    Article  Google Scholar 

  • Kelly KD, Leach DL, Johnson CA, Clark JL, Fayek M, Slack JF, Anderson VM, Ayuso RA, Ridley WI (2004) Textural, compositional, and sulfur isotope variations of sulfide minerals in the Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska: implications for ore formation. Econ Geol 99(7):1509–1532

    Article  Google Scholar 

  • Kesler SE (2005) Ore-forming fluids. Elements 1:13–18

    Article  Google Scholar 

  • Kharbish S (2007) A Raman spectroscopic investigation of Fe-rich sphalerite: effect of Fe-substitution. Phys Chem Miner 34:551–558

    Article  Google Scholar 

  • Kreuzer O (2005) Intrusion-hosted mineralization in the Charters Towers Goldfield, North Queensland: new isotopic and fluid inclusion constraints on the timing and origin of the auriferous veins. Econ Geol 100:1583–1603

    Article  Google Scholar 

  • Lasemi Y, Ghomashi M, Amin-Rasouli H, Kheradmand A (2008) The lower Triassic Sorkh shale Formation of the Tabas block, east central Iran: succession of a failed–rift basin at the plaleotethys margin. Carbonates and Evaporites. 23:21–38

    Article  Google Scholar 

  • Leach DL, Sangster DF (1993) Mississippi valley-typelead–zinc deposit. In: Kirkham RV, Sinclair, WD, Thorpe, RI, Duke, JM, (Eds.), Mineral deposit modeling. Geological Association of Canada Special Paper 40: 289-314.

  • Leach DL, Sangster DF, Kelley KD, Large RR, Garven G, Allen CR, Walters S (2005) Sediment-hosted lead-zinc deposits: a global perspective. Econ Geol. 100th Anniversary Volume, 561-607.

  • Leach DL, Taylor RD, Fey DL, Diehl, SE, Saltus RW (2010) A deposit model for Mississippi Valley-Type lead-Zinc ores, U.S. Geological Survey Science Investigation Report 2010-5070A.

  • Lepetit P, Bente K, Doering T, Luckhaus S (2003) Crystal chemistry of Fe-containing sphalerites. Phys Chem Miner 30:185–191

    Article  Google Scholar 

  • Li Z, Xue C, Wu Y, Dong X, Wang S, Yu R, Chen J (2015) The nappe-hosted Hoshbulak MVT Zn-Pb deposit, Xinjiang, China: a review of the geological, elemental and stable isotopic constraints. Ore Geol Rev 70:47–60

    Article  Google Scholar 

  • Liu G, Yuana F, Denga Y, Jowittd SM, Suna W, White NC, Yang D, Li X, Zhou T, Huizenga JM (2018) The genesis of the Hehuashan Pb–Zn deposit and implications for the Pb–Zn prospectivity of the Tongling district, Middle–Lower Yangtze River Metallogenic Belt, Anhui Province, China. Ore Geol Rev 101:105–121

    Article  Google Scholar 

  • Lockington JA, Cook NJ, Ciobanu CL (2014) Trace and minor elements in sphalerite from metamorphosed sulphide deposits. Miner Petrol 108:873–890

    Article  Google Scholar 

  • Malekzadeh Shafaroudi A, Karimpour MH (2015) Mineralogic, fluid inclusion, and sulfur isotope evidence for the genesis of Sechangi lead–zinc (–copper) deposit, Eastern Iran. J Afr Earth Sci 107:1–14

    Article  Google Scholar 

  • Martin JD, Gil ASI (2005) An integrated thermodynamic mixing model for sphalerite geobarometry from 300 to 850 °C and up to 1 GPa. Geochim. Cosmochim Acta 69:995–1006

    Article  Google Scholar 

  • Masoodi M, Yassaghi A, Nogol-Sadat MAA, Neubauer F, Bernroider M, Friedl G, Genser J, Houshmandzadeh A (2013) Cimmerian evolution of the Central Iranian basement: evidence from metamorphic units of the Kashmar–Kerman Tectonic Zone. Tectonophysics 588:189–208

    Article  Google Scholar 

  • Mclimans RK, Barnes HL, Ohmoto H (1980) Sphalerite stratigraphy of the Upper Mississippi Valley Lead-Zinc District, Southwest Wisconsin. Econ Geol 75:351–361

    Article  Google Scholar 

  • Moghadam HS, Whitechurch H, Rahgoshay M, Monsef I (2009) Significance of Nain- Baft ophiolitic belt (Iran): Short–lived, transtensional Cretaceous back-arc oceanic basins over the Tethyan subduction zone. Comp Rend Geosci 341:1016–1028

    Article  Google Scholar 

  • Mudd GM, Jowitt SM, Werner TT (2017) The world’s lead-zinc mineral resources: scarcity, data, issues and opportunities. Ore Geol Rev 80:1160–1190

    Article  Google Scholar 

  • Murakami H, Ishihara S (2013) Trace elements of Indium-bearing sphalerite from tinpolymetallic deposits in Bolivia, China and Japan: a femto-second LA-ICPMS study. Ore Geol Rev 53:223–243

    Article  Google Scholar 

  • Nataľin BA, Şengör AM (2005) Late Palaeozoic to Triassic evolution of the Turan and Scythian platforms: the pre-history of the Palaeo-Tethyan closure. Tectonophysics 404:175–202

    Article  Google Scholar 

  • Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon in the geochemistry of hydrothermal ore deposits. Willey, New York, pp 509–567

    Google Scholar 

  • Ohmoto H, Kaiser CJ, Geer KA (1990) Systematics of sulphur isotopes in recent marine sediments and ancient sediment-hosted base metal deposits. In: Herbert, H.K., Ho, S.E. (Eds.), Stable isotopes and fluid processes in mineralisation: Geol. Dep., Univ. Extens., Univ. Western Australia, pp 70–120.

  • Paul R (1980) The ore minerals and their intergrowths. Elsevier, Pergamon

    Google Scholar 

  • Rajabi A, Rastad E, Canet C (2012) Metallogeny of Cretaceous carbonate hosted Zn\Pb deposits of Iran: geotectonic setting and data integration for future mineral exploration. Int Geol Rev 54:1649–1672

    Article  Google Scholar 

  • Rajabi A, Rastad E, Canet C, Alfonso P (2015) The early Cambrian Chahmir shale-hostedZn–Pb deposit, Central Iran: an example of vent-proximal SEDEX mineralization. Miner Deposita 50:571–590

    Article  Google Scholar 

  • Reichert J (2007) A metallogenetic model for carbonate-hosted non-sulfide zinc deposits based on observations of Mehdi Abad and Irankuh, Central and Southwestern Iran (Ph.D. thesis), Martin Luther University, Halle Wittenberg

  • Richards JP, Spell T, Rameh E, Razique A, Fletcher T (2012) High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the tethyan arcs of central and eastern Iran and western Pakistan. Econ Geol 107:295–332

    Article  Google Scholar 

  • Roedder E (1958) Technique for the extraction and partial chemical analysis of fluid-filled inclusions from minerals. Econ Geol 53:235–269

    Article  Google Scholar 

  • Roedder E (1972) The composition of fluid inclusions. U.S. Geological Survey

  • Roedder E (1984) Fluid inclusions. Mineral Soc Am Rev Mineral 12:644

    Google Scholar 

  • Rossetti F, Nasrabady M, Vignaroli G, Theye T, Gerdes A, Razavi M, Moin Vaziri H (2010) Early Cretaceous migmatitic mafic granulites from the Sabzevar range (NE Iran): implications for the closure of the Mesozoic peri-Tethyan oceans in central Iran. Terra Nova 22:26–34

    Article  Google Scholar 

  • Sack RO, Ebel DS (2006) Thermochemistry of sulfide mineral solutions. Reviews in Mineralogy and Geochemistry 61:265–364

    Article  Google Scholar 

  • Schwartz MO (2000) Cadmium in zinc deposits: economic geology of a polluting element. Inter Geol Rev 42:445–469

    Article  Google Scholar 

  • Scott SD, Barnes HL (1971) Sphalerite geothermometry and geobarometry. Econ Geol 66:653–669

    Article  Google Scholar 

  • Seifert T, Sandmann D (2006) Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: implications for host minerals from the Freiberg district, eastern Erzgebirge, Germany. Ore Geol Rev 28(1):1–31

    Article  Google Scholar 

  • Sengör AMC (1987) Tectonics of the Tethysides: orogenic collage development in a collisional setting. Annu Rev Earth Planet Sci 15:213–244

    Article  Google Scholar 

  • Shepherd TJ, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie, London

    Google Scholar 

  • Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth Planet. Sci Lett 196:17–33

    Google Scholar 

  • Stöcklin J (1968) Structural history and tectonics of Iran: a review. American Association of Petroleum Geologists Bulletin. 52:1229–1258

    Google Scholar 

  • Torab FM, Lehmann B (2007) Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology. Mineralogical Magazine 71(3):347–363

    Article  Google Scholar 

  • Wei C, Huang ZL, Yan ZF, Hu YS (2018) Ye L (2018) Trace element contents in sphalerite from the Nayongzhi Zn-Pb deposit, Northwestern Guizhou, China: insights into incorporation mechanisms, metallogenic temperature and ore genesis. Minerals 8(11):490. https://doi.org/10.3390/min8110490

    Article  Google Scholar 

  • Wei C, Ye L, Hu YS, Danyushevskiy L, Li ZL, Huang ZL (2019) A distribution and occurrence of Ge and related trace elements in sphalerite from the Lehong carbonate-hosted Zn-Pb deposit, northeastern Yunnan, China: Insights from SEM and LA-ICP-MS studies. Ore Geol Rev 115:103175. https://doi.org/10.1016/j.oregeorev.2019.103175

    Article  Google Scholar 

  • Wen HJ, Zhu CW, Zhang YX, Cloquet C, Fan HF, Fu SH (2016) Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits. Sci Rep 6:25273

    Article  Google Scholar 

  • Werner TT, Mudd GM, Jowitt SM (2017a) The world’s by-product and critical metal resources part II: a method for quantifying the resources of rarely reported metals. Ore Geol Rev 80:658–675

    Article  Google Scholar 

  • Werner TT, Mudd GM, Jowitt SM (2017b) The world’s by-product and critical metal resources part III: a global assessment of indium. Ore Geol Rev 86:939–956

    Article  Google Scholar 

  • Wilmsen M, Fürsich FT, Seyed-Emami K, Majidifard MR, Zamani-Pedram M (2010) Facies analysis of a large-scale Jurassic shelf-lagoon: the Kamar-e-Mehdi Formation of east-central Iran. Facies 56:59–87

    Article  Google Scholar 

  • Ye L, Cook NJ, Ciobanu CL, Liu Y, Zhang Q, Liu T, Gao W, Yang Y, Danyushevskiy L (2011) Trace and minor elements in sphalerite from base metal deposits in South China: a LA-ICPMS study. Ore Geol Rev 39:188–217

    Article  Google Scholar 

  • Ye L, Cook NJ, Liu TG, Ciobanu CL, Gao W, Yang YL (2012) The Niujiaotang Cd rich zinc deposit, Duyun, Guizhou province, southwest China: ore genesis and mechanisms of cadmium concentration. Miner Deposita 47:683–700

    Article  Google Scholar 

  • Yu QH, Li RQ, Feng ZT (1987) The typomorphic characteristics of sphalerite from the lead-zinc deposits in Nanling area. Proceedings of the first national symposium on mineralogy. Geological Publishing House, Beijing, pp 80–85

    Google Scholar 

  • Yu D, Xu D, Zhao Z, Huang Q, Wang Z, Deng T, Zou S (2020) Genesis of the Taolin Pb-Zn deposit in northeastern Hunan Province, South China: constraints from trace elements and oxygen-sulfur-lead isotopes of the hydrothermal minerals. Miner Deposita. 55:1467–1488. https://doi.org/10.1007/s00126-019-00947-8

    Article  Google Scholar 

  • Zhai DG, Liu JJ, Wang JP, Yao MJ, Wu SH, Fu C, Liu ZJ, Wang SG, Li YX (2013) Fluid evolution of the Jiawula Ag-Pb-Zn deposit, Inner Mongolia: mineralogical, fluid inclusion, and stable isotopic evidence. Int Geol Rev 55:204–224

    Article  Google Scholar 

  • Zhu YF, Zeng YS, Jiang N (2001) Geochemistry of the ore-forming fluids in gold deposits from the Taihang mountains, northern China. Int Geol Rev 43:457–473

    Article  Google Scholar 

  • Zhuang L, Song Y, Liu Y, Fard M, Hou Z (2019) Major and trace elements and sulfur isotopes in two stages of sphalerite from the world-class Angouran Zn–Pb deposit, Iran: implications for mineralization conditions and type. Ore Geol Rev 109:184–200

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Mr. Bahreini and Ahmadie for their support in several field studies and the helpful data provided. Thanks to Associate Editor and anonymous reviewers for their useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balandeh Aminzadeh.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Responsible Editor: Domenico M. Doronzo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aminzadeh, B. Mineralogy, fluid evolution, geochemical characteristics in two types of sphalerite and genesis of the Tarz Zn–Pb deposit, Iran. Arab J Geosci 14, 2075 (2021). https://doi.org/10.1007/s12517-021-08404-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-08404-5

Keywords

Navigation