Skip to main content
Log in

Petrography and geochemistry of the Neogene continental redbeds in the Eshtehard area, Alborz Province, Iran: insights into tectonic setting, provenance and paleoclimate

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The present study provides systematic petrographical and geochemical analyses of the Neogene continental successions of the Eshtehard area to investigate their tectonic setting, provenance and paleoclimate condition, and recycling effect. The Neogene successions are subdivided into five stratigraphic units (M1 to M5). Eighteen medium- to coarse-grained sandstone and 22 mudstone samples were selected from the Mard Abad, Eshtehard, Rud Shur, and Salt Mine sections in the Eshtehard area (NW Central Iran Structural Zone). A combined study of petrography (point-counting method) and geochemistry (ICP-MS) has been carried out in this study. The ternary diagrams (QtFL, QmFLt, and LmLvLs) for detrital modes and the discrimination diagram reveal that the studied samples from the units M1 to M5 were deposited in a back-arc basin. The Ti/Zr vs. La/Sc bivariate diagram and La-Th-Sc, Th-Co-Zr/10, and Th-Sc-Zr/10 triangular diagrams indicate that mudstones from the Neogene continental deposits in the Eshtehard area were potentially derived from intermediate igneous rocks. The low CIA (55.78 to 69.36) and C-values (0.27 to 0.53) of mudstones together with their position in A-CN-K and SiO2 vs. (Al2O3 + K2O + Na2O) plots indicate weak to moderate chemical weathering of the source material in arid to semi-arid paleoclimate conditions. The Neogene siliciclastic deposits in the Eshtehard area were derived from intermediate igneous source rocks within a back-arc basin north of the Urumieh–Dokhtar magmatic arc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Agard P, Omrani J, Jolivet L, Whitechurch H, Vrielynck B, Spakman W, Monie P, Meyer B, Wortel R (2011) Zagros orogeny: a subduction-dominated process. Geol Mag 148:692–725

    Article  Google Scholar 

  • Agard P, Omrani J, Jolivet L, Mouthereau F (2005) Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. Int J Earth Sci 94:401–419

    Article  Google Scholar 

  • Aghanabati SA (2004) Geology of Iran: geological survey of Iran

  • Ahmad I, Chandra R (2013) Geochemistry of loess-paleosol sediments of Kashmir Valley, India: provenance and weathering. J Asian Earth Sci 66:73–89

    Article  Google Scholar 

  • Ahmadi-Ghomi F (2018) Tectonic provenance, depositional environment and sequence stratigraphy of the Upper Red Formation, Avaj area, Qazvin Province, Ph.D. thesis, Bu-Ali Sina University, Unpublished thesis

  • Ahmadi-Ghomi F, Rafiei B, Sadr AH (2018) Revision of the Miocene Upper Red Formation in the Avaj-Abegarm area, west of Iran. Appl Sediment 12:40–60

    Google Scholar 

  • Alavi M (1996) Tectonostratigraphic synthesis and structural style of the Alborz mountain system in northern Iran. J Geodyn 21:1–33

    Article  Google Scholar 

  • Amini A (1997) Provenance and depositional environment of the Upper Red Formation, Central Zone, Iran. Ph.D. thesis, Manchester University, Unpublished thesis

  • Armstrong-Altrin JS (2009) Provenance of sands from Cazones, Acapulco, and Bahía Kino beaches, Mexico. Rev Mex Cienc Geol 26:764–782

    Google Scholar 

  • Wilmsen M, Fürsich FT, Seyed-Emami K, Majidifard MR, Taheri J (2009b) The Cimmerian Orogeny in northern Iran: tectono-stratigraphic evidence from the foreland. Terra Nova. 21: 211–218.

  • Armstrong-Altrin JS, Lee YI, Kasper-Zubillaga JJ, Trejo-Ramírez E (2016) Mineralogy and geochemistry of sand along the Manzanillo and El Carrizal beach areas, southern Mexico: implications for palaeoweathering, provenance and tectonic setting. Geol J. https://doi.org/10.1002/gj.2792

  • Armstrong-Altrin JS, Nagarajan R, Madhavaraju J, Rosalez-Hoz L, Lee YI, Balaram V, Cruz-Martinez A, Avila-Ramirez G (2013) Geochemistry of the Jurassic and upper Cretaceous shales from the Molango Region, Hidalgo, Eastern Mexico: implications of source-area weathering, provenance, and tectonic setting. Compt Rendus Geosci 345:185–202

    Article  Google Scholar 

  • Armstrong-Altrin JS, Verma SP (2005) Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sediment Geol 177:115–129

    Article  Google Scholar 

  • Armstrong-Altrin JS, Machain-Castillo ML, Rosales-Hoz L, Carranza-Edwards A, Sanchez-Cabeza JA, Ruíz-Fernández AC (2015) Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis. Continental Shelf Research. 95: 15-26.

  • Armstrong-Altrin JS, Lee YI, Verma SP, Ramasamy S (2004) Geochemistry of sandstones from the upper Miocene Kudankulam Formation Southern India: implications for provenance, weathering and tectonic setting. J Sediment Res 74:285–297

    Article  Google Scholar 

  • Arribas J, Critelli S, Johnsson MJ (2007) Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry. Geol Soc Am S 420:396

    Google Scholar 

  • Bai Y, Liu Z, Sun P, Liu R, Hu X, Zhao H, Xu Y (2015) Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale- and coal-bearing layers of the Meihe Basin, northeast China. J Asian Earth Sci 97:89–101

    Article  Google Scholar 

  • Baiyegunhi TL, Liu K, Gwavava O, Baiyegunhi C (2020) Petrography and tectonic provenance of the cretaceous sandstones of the Bredasdorp Basin, off the South Coast of South Africa: evidence from framework grain modes. Geosciences 10:340

    Article  Google Scholar 

  • Berberian M, King GCP (1981) Toward a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265

    Article  Google Scholar 

  • Bhatia MR, Crook KAW (1986) Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol 92:181–193

    Article  Google Scholar 

  • Bhatia MR (1985) Composition and classification of Paleozoic flysch mudrocks of eastern Australia: implications in provenance and tectonic setting interpretation. Sediment Geol 41:249–268

    Article  Google Scholar 

  • Bhatia MR (1983) Plate tectonics and geochemical composition of sandstones. J Geol 91:611–627

    Article  Google Scholar 

  • Blatt H, Middleton GYM, Murray R (1980) Origin of sedimentary rocks, 2nd edn. Prentice-Hall, Englewood Cliffs, p 783

    Google Scholar 

  • Cao J, Wu M, Chen Y, Hu K, Bian LZ, Wang LG, Zhang Y (2012) Trace and rare earth element geochemistry of Jurassic mudstones in the northern Qaidam Basin, northwest China. Geochemistry 72:245–252

    Article  Google Scholar 

  • Condie KC (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem Geol 104:1–37

    Article  Google Scholar 

  • Condie KC, Boryta MD, Liu J, Quian X (1992) The origin of khondalites: geochemical evidence from the Archean to early Proterozoic granulitic belt in the North China Craton. Precambrian Res 59:207–223

    Article  Google Scholar 

  • Condie KC, Wronkiewicz DJ (1990) The Cr/Th ratio in Precambrian pelites from the Kaapvaal craton as an index of craton evolution. Earth Planet Sci Lett 97:256–267

    Article  Google Scholar 

  • Cox R, Lowe DR, Cullers RL (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim Cosmochim Acta 59:2919–2940

    Article  Google Scholar 

  • Cullers RL (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos 51:181–203

    Article  Google Scholar 

  • Cullers RL (1995) The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountains region, Colorado, U.S.A. Chem Geol 123:107–131

    Article  Google Scholar 

  • Cullers RL (1988) Mineralogical and chemical changes of soil and stream sediment formed by intense weathering of the Danburg granite, Georgia, U.S.A. Lithos 21:301–314

    Article  Google Scholar 

  • Cullers RL, Podkovyrov VN (2000) Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling. Precambrian Res 104:77–93

    Article  Google Scholar 

  • Das BK, Al-Mikhlafi AS, Kaur P (2006) Geochemistry of Mansar lake sediments, Jammu, India: implication for Source-area weathering, provenance, and tectonic setting. J Asian Earth Sci 26:649–668

    Article  Google Scholar 

  • Deepthi K, Natesan U, Muthulakshmi AL, Ferrer VA, Venugopalan VP, Narasimhan SV (2013) Geochemical characteristics and depositional environment of Kalpakkam, southeast coast of India. Environ Earth Sci 69:2357–2364

    Article  Google Scholar 

  • Dickinson WR (1985) Interpreting provenance relation from detrital modes of sandstones. In: Zuffa GG (ed) Provenance of Arenites. Reidel Publishing Company, Dordrecht, pp 333–363

    Chapter  Google Scholar 

  • Dickinson WR, Beard LS, Brakenridge GR, Erjavec JL, Ferguson RC, Inman KF, Knepp RA, Lindberg FA, Ryberg PT (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol Soc Am Bull 94:222–235

    Article  Google Scholar 

  • Dickinson WR, Suczek DR (1979) Plate tectonics and sandstone compositions. Am Assoc Petr Geol B 63:2164–2182

    Google Scholar 

  • Ding X, Tian J, Chen J, Yao J, Deng X, Li Y (2015) Paleogeographic framework and provenance features during Late Triassic Chang 9 time of the Yanchang Formation, Ordos Basin. China Arab J Geosci 8:6731–6743

    Article  Google Scholar 

  • Fan X, Liu G, Sun R, Sun M (2015) Geochemical characteristics of argillaceous rocks in Permian coal-bearing strata in Huainan and their geological implications. Earth Sci Front 22:299–311

    Google Scholar 

  • Fedo CM, Young GM, Nesbitt HW (1997a) Paleoclimatic control on the composition of the Paleoproterozoic serpent formation, Huronian supergroup, Canada: a green-house to icehouse transition. Precambrian Res 86:201–223

    Article  Google Scholar 

  • Fedo CM, Young GM, Nesbitt HW, Hanchar JM (1997b) Potassic and sodic metasomatism in the southern Province of the Canadian Shield: evidence from the Paleoproterozoic serpent formation, Huronian supergroup, Canada. Precambrian Res 84:17–36

    Article  Google Scholar 

  • Fedo CM, Nesbitt HW, Young GM (1995) Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23:921–924

    Article  Google Scholar 

  • Fedo CM, Eriksson KA, Krogstad EJ (1996) Geochemistry of shales from the Archean (3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: implications for provenance and source area weathering. Geochem Cosmochim Acta 60:1751–1763

    Article  Google Scholar 

  • Floyd PA, Franke W, Shail R, Dorr W (1989) Geochemistry and tectonic setting of Lewisian clastic metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precambrian Res 45:203–214

    Article  Google Scholar 

  • Floyd PA, Leveridge BE (1987) Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. J Geol Soc 144:531–542

    Article  Google Scholar 

  • Folk E (1974) Petrography of sedimentary rocks. Hemphill Publishing, Company, p 182

    Google Scholar 

  • Folk RL (1980) Petrology of sedimentary rocks. Hemphill Publishing Co., Austin, p 182

    Google Scholar 

  • Fu XG, Wang J, Zeng YH, Tan FW, He JL (2011) Geochemistry and origin of rare earth elements (REEs) in the Shengli River oil shale, northern Tibet, China. Geochemistry 71:21–30

    Article  Google Scholar 

  • Gabriel N, Armel Zacharie EB, John ET, David DZ, Hadidjatou BD, Lionel TN (2019) Geochemistry of cretaceous fine-grained siliciclastic rocks from Upper Mundeck and Logbadjeck Formations, Douala sub-basin, SW Cameroon: implications for weathering intensity, provenance, paleoclimate, redox condition, and tectonic setting. J Afr Earth Sci 152:215–236. https://doi.org/10.1016/j.jafrearsci.2019.02.021

    Article  Google Scholar 

  • Gallala W, Gaied ME, Montacer M (2009) Detrital mode, mineralogy and geochemistry of the Sidi Aïch Formation (Early Cretaceous) in central and southwestern Tunisia: Implications for provenance, tectonic setting and paleoenvironment. J Afr Earth Sci 53:159–170

    Article  Google Scholar 

  • Garcia D, Ravenne C, Marechal B, Moutte J (2004) Geochemical variability induced by entrainment sorting: quantified signals for provenance analysis. Sediment Geol 171:113–128

    Article  Google Scholar 

  • Garzanti E, Doglioni C, Vezzoli G, Andò S (2007) Orogenic belts and orogenic sediment provenance. J Geol 115:315–334

    Article  Google Scholar 

  • Ghazi S, Mountney NP (2011) Petrography and provenance of the Early Permian Fluvial Warchha Sandstone, Salt Range, Pakistan. Sediment Geol 233:88–110

    Article  Google Scholar 

  • Ghosh S, Sarkar S, Ghosh P (2012) Petrography and major element geochemistry of the Permo-Triassic sandstones, central India: implications for provenance in an intracratonic pull-apart basin. J Asian Earth Sci 43:207–240

    Article  Google Scholar 

  • Gu XX, Liu JM, Zheng MH, Tang JX, Qi L (2002) Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China: geochemical evidence. J Sediment Res 72:393–407

    Article  Google Scholar 

  • Habicht JKA (1979) Paleoclimate, paleomagnetism, and continental drift. AAPG Studies in Geology No. 9.

  • Hassan S, Ishiga H, Roser BP, Dozen K, Naka T (1999) Geochemistry of Permian Triassic shales in the Salt Range, Pakistan: implications for provenance and tectonism at the Gondwana margin. Chem Geol 168:293–314

    Article  Google Scholar 

  • Hayashi KI, Fujisawa H, Holland HD, Ohmoto H (1997) Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta 61:4115–4137

    Google Scholar 

  • Herron MM (1988) Geochemical classification of terrigenous sands and shales from core of log data. J Sediment Petrol 58:820–829

    Google Scholar 

  • Hessler AM, Lowe DR (2006) Weathering and sediment generation in the Archean: an integrated study of the evolution of siliciclastic sedimentary rocks of the 3.2 Ga Moodies Group, Barberton Greenstone Belt, South Africa. Precambrian Res 151:185–210

    Article  Google Scholar 

  • Hoseini SH, Najafi M, Moussavi-Harami R (2012) Interpretation of sedimentary environment, sequence stratigraphy and provenance of Neogene deposits of the east of Kopeh Dagh and Central Iran. Sedimentary Facies 5:31–45

    Google Scholar 

  • Hulka C, Heubeck C (2010) Composition and provenance history of Late Cenozoic sediments in southeastern Bolivia: Implications for Chaco Foreland Basin evolution and Andean Uplift. J Sediment Res 80:288–299

    Article  Google Scholar 

  • Ingersoll RV, Bullard TF, Ford RL, Grimm JP, Pickle JD, Sares SW (1984) The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method. J Sediment Petrol 54:103–116

    Google Scholar 

  • Ingersoll RV, Suczek CA (1979) Petrology and provenance of Neogene sand from Nicobar and Bengal fans, DSDP sites 211 and 218. J. Sediment. Res. 49: 1217-1228.l

  • Johnsson MJ (1993) The system controlling the composition of clastic sediments. In: Johnsson, M.J., and Basu, A., (Eds) Processes controlling the composition of clastic sediments. Geol. Soc. Am. S. 284: 1–19.

  • Kroonenberg SB (1994) Effects of provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environments. 29th International Geological Congress, Kyoto, pp 69–81

    Google Scholar 

  • Lee YI (2009) Geochemistry of shales of the Upper Cretaceous Hayang Group, SE Korea: implications for provenance and source weathering at an active continental margin. Sediment Geol 215:1–12

    Article  Google Scholar 

  • Long XP, Sun M, Yuan C, Xiao WJ, Cai K (2008) Early Paleozoic sedimentary record of the Chinese Altai: implications for its tectonic evolution. Sediment Geol 208:88–100

    Article  Google Scholar 

  • Löwen K, Meinhold G, Güngör T (2018) Provenance and tectonic setting of Carboniferous–Triassic sandstones from the Karaburun Peninsula, western Turkey: a multi-method approach with implications for the Palaeotethys evolution. Sediment Geol 375:232–255

    Article  Google Scholar 

  • Lu FX, Sang LK (2002) Petrology. Geological Publishing House, Beijing, pp 309–322

    Google Scholar 

  • Ma PF, Wang LC, Wang CS, Wu XH, Wei YS (2015) Organic-matter accumulation of the lacustrine lunpola oil shale, central Tibetan plateau: controlled by the paleoclimate, provenance, and drainage system. Int J Coal Geol 147:58–70

    Article  Google Scholar 

  • Madhavaraju J (2015) Geochemistry of late Cretaceous sedimentary rocks of the Cauvery Basin, south India: constraints on paleo-weathering, provenance, and end Cretaceous environments. Chemostratigraphy 124:185–214

    Article  Google Scholar 

  • Madhavaraju J, Ramírez-Montoya E, Monreal R, González-León CM, Pi-Puig T, Espinoza-Maldonado IG, Grijalva-Noriega FJ (2016) Paleoclimate, paleoweathering and paleoredox conditions of Lower Cretaceous shales from the Mural Limestone, Tuape section, northern Sonora, Mexico: constraints from clay mineralogy and geochemistry. Rev Mex Cienc Geol 33:34–48

    Google Scholar 

  • Mahdizadeh S 1995. Explanatory text of the Karaj quadrangle map, Iran, Scale 1:100000. Geol Surv Iran.

  • Malekzadeh M, Hosseini-Barzi M, SadeghiA CS (2020) Geochemistry of Asara Shale member of Karaj Formation, Central Alborz, Iran: Provenance, source weathering and tectonic setting. Mar Pet Geol 121:104584

    Article  Google Scholar 

  • Mazumder R (2017) Sediment provenance, influences on compositional change from source to sink, 595 pp.

  • McLennan SM, Hemming S, McDaniel DK, Hanson GN (1993) Geochemical approaches to sedimentation, provenance and tectonics, In: Johnsson MJ, Basu A (Eds.), Processes Controlling the Composition of Clastic Sediments. Geol. S. Am. S. 21–40.

  • McLennan SM, Taylor SR, Kröner A (1983) Geochemical evolution of Archean shales from South Africa, The Swaziland and Pongola Supergroups. Precambrian Res 22:93–124

    Article  Google Scholar 

  • Moine-Vaziri H (1985) Volcanisme tertiaire it quaternaire in Iran. Diss, Paris, p 11

    Google Scholar 

  • Moosavirad SM, Janardhana MR, Sethumadhav MS, Moghadam MR, Shankara M (2011) Geochemistry of lower Jurassic shales of the Shemshak Formation, Kerman Province, Central Iran: provenance, source weathering and tectonic setting. Geochemistry 71:279–288

    Article  Google Scholar 

  • Moradi AV, Sari A, Akkaya P (2016) Geochemistry of the Miocene oil shale (Hançili Formation) in the Çankırı-Çorum Basin, Central Turkey: implications for Paleoclimate conditions, source–area weathering, provenance and tectonic setting. Sediment Geol 341:289–303

    Article  Google Scholar 

  • Mortazavi AV, Moussavi-Harami R, Mahboubi A, Nadjafi M (2014) Geochemistry of the Late Jurassic-Early Cretaceous shales (Shurijeh Formation) in the intercontinental Kopet-Dagh Basin, northeastern Iran: implication for provenance, source weathering, and paleoenvironment. Arab J Geosci 7:5353–5366

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim Cosmochim Acta 48:1523–1534

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    Article  Google Scholar 

  • Nesbitt HW, Markovics G, Price RC (1980) Chemical processes affecting alkalis and alkaline earth during continental weathering. Geochim Cosmochim Acta 44:1659–1666

    Article  Google Scholar 

  • Omrani J, Agard P, Whitechurch H, Benoit M (2008) Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos 106:380–398

    Article  Google Scholar 

  • Pettijohn FJ, Potter PE, Siever R (1987) Sand and sandstone, 2nd edn. Springer, New York, p 559

    Book  Google Scholar 

  • Purevjav N, Roser B (2012) Geochemistry of Devonian-Carboniferous clastic Sediments of the Tsetserleg terrane, Hangay Basin, central Mongolia: provenance, source weathering, and tectonic setting. Island Arc 21:270–287

    Article  Google Scholar 

  • Rahman MJJ, Suzuki S (2007) Composition of Neogene shales from the Surma Group, Bengal Basin, Bangladesh: implications for provenance and tectonic setting. Austrian J Earth Sci 100:54–64

    Google Scholar 

  • Roser BP, Korsch RJ (1988) Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chem Geol 67:119–139

    Article  Google Scholar 

  • Roser BP, Korsch RJ (1986) Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Geology 94:635–650

    Google Scholar 

  • Ross DJK, Bustin RM (2009) Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: examples from the Devonian–Mississippian shales, Western Canadian Sedimentary Basin. Chem Geol 200:1–19

    Article  Google Scholar 

  • Roy D, Roser BP (2012) Geochemistry of the Tertiary sequence in the Shahbajpur-1 well, Hatia Trough, Bengal Basin, Bangladesh: provenance, source weathering and province affinity. J Life Earth Sci 7:1–13

    Article  Google Scholar 

  • Roy PD, Caballero M, Lozano R, Smykatz-Kloss W (2008) Geochemistry of Late Quaternary sediments from Tecocomulco Lake, central Mexico: implication to chemical weathering and provenance. Chem Erde-Geochem 68:383–393

    Article  Google Scholar 

  • Sabaou N, Ait-Salem H, Zazoum RS (2009) Chemostratigraphy, tectonic setting and provenance of the Cambro- Ordovician clastic deposits of the subsurface Algerian Sahara. J Afr Earth Sci 55:158–174

    Article  Google Scholar 

  • Selvaraj K, Chen CTA (2006) Moderate chemical weathering of subtropical Taiwan: constraints from solid-phase geochemistry of sediments and sedimentary rocks. J Geol 114:101–116

    Article  Google Scholar 

  • Shahabpour J (2007) Island-arc affinity of the Central Iranian volcanic belt. J Asian Earth Sci 30:652–665

    Article  Google Scholar 

  • Sun LH, Gui HR, Chen S (2012) Geochemistry of sandstones from the Neoproterozoic Shijia Formation, northern Anhui Province, China: implications for provenance, weathering and tectonic setting. Geochemistry 72:253–260

    Article  Google Scholar 

  • Suttner LJ, Dutta PK (1986) Alluvial sandstone composition and paleoclimate; I, Framework mineralogy. J Sediment Petrol 56:329–345

    Google Scholar 

  • Tao HF, Sun S, Wang ZQ, Yang XF, Jiang L (2014) Petrography and geochemistry of Lower Carboniferous greywacke and mudstones in Northeast Junggar, China: implications for provenance, source weathering, and tectonic setting. J Asian Earth Sci 87:11–25

    Article  Google Scholar 

  • Taylor SR, McLennan SM, (1985) The continental crust: its composition and evolution, Blackwell Scientific Publications, 312 pp.

  • Tucker ME (2001) Sedimentary petrology. An introduction to the origin of sedimentary rocks, Third ed. Blackwell, 291 pp.

  • Verma SP, Armstrong-Altrin JS (2016) Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sediment Geol 332:1–12

    Article  Google Scholar 

  • Verma SP, Armstrong-Altrin JS (2013) New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chem Geol 355:117–133

    Article  Google Scholar 

  • Von Eynatten H, Barceló-Vidal C, Pawlowsky-Glahn V (2003) Modelling compositional change: the example of chemical weathering of granitoid rocks. Math Geol 35:231–251

    Article  Google Scholar 

  • Wang ZW, Wang J, Fu X, Zhan W, Armstrong-Altrin JS, Yu F, Feng X, Song C, Zeng S (2018) Geochemistry of the Upper Triassic black mudstones in the Qiangtang Basin, Tibet: implications for paleoenvironment, provenance, and tectonic setting. J Asian Earth Sci 160:118–135

    Article  Google Scholar 

  • Wang ZW, Wang J, Fu XG, Feng XL, Wang D, Song CY, Chen WB, Zeng SQ (2017b) Petrography and geochemistry of Upper Triassic sandstones from the Zana Formation in the Woruo Mountain area, North Qiangtang Basin, Tibet: implications for provenance, source area weathering and tectonic setting. Island Arc 26:12–19

    Article  Google Scholar 

  • Wang ZW, Wang J, Fu XG, Zhan WZ, Yu F, Feng XL, Song CY, Chen WB, Zeng SQ (2017c) Organic material accumulation of Carnian mudstones in the North Qiangtang Depression, eastern Tethys: controlled by the paleoclimate, paleoenvironment, and provenance. Mar Pet Geol 88:440–457

    Article  Google Scholar 

  • Wilmsen M, Fürsich FT, Seyed-Emami K, Majidifard MR, Taheri J (2009b) The Cimmerian Orogeny in northern Iran: tectono-stratigraphic evidence from the foreland. Terra Nova. 21: 211–218.

  • Wronkiewicz DJ, Condie KC (1987) Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source area weathering and provenance. Geochem Cosmochim Acta 51:2401–2416

    Article  Google Scholar 

  • Yan DT, Chen DZ, Wang QC, Wang JG (2010) Large-scale climate fluctuations in the latest Ordovician on the Yangtze block, South China. Geology 38:599–602

    Article  Google Scholar 

  • Yan Z, Wang Z, Yan Q, Wang T, Guo X (2012) Geochemical constraints on the provenance and depositional setting of the Devonian Liuling group, east Qinling mountains, central China: implications for the tectonic evolution of the qinling orogenic belt. J Sediment Res 82:9–24

    Article  Google Scholar 

  • Yousefi M (2000) Explanatory text of the Eshtehard quadrangle map, Iran. Scale 1:100000. Geol Surv Iran.

  • Yu L, Zou S, Cai J, Xu D, Zou F, Wang Z, Wu C, Liu M (2016) Geochemical and Nd isotopic constraints on provenance and depositional setting of the Shi-huidin Formation in the Shilu Fe-Co-Cu ore district, Hainan Province, south China. J Asian Earth Sci 119:100–117

    Article  Google Scholar 

  • Zaheri M, Rafiei B (2019) Facies analysis, petrography and geochemistry of the Neogene gypsum deposits in the Eshtehard area, Alborz Province, Iran. Geopersia.

  • Zaheri M (2020) Tectonic provenance, depositional environment and sequence stratigraphy of Neogene Red Beds, Eshtehard – Karaj, Alborz Province, Ph.D. thesis, Bu-Ali Sina University, Unpublished thesis.

  • Zaid SM (2012) Provenance, diagenesis, tectonic setting and geochemistry of Rudies sandstone (Lower Miocene), Warda Field, Gulf of Suez. Egypt. J Afr Earth Sci 66:56–71

    Article  Google Scholar 

  • Zaid SM (2015) Geochemistry of sandstones from the Pliocene GabirFormation, north Marsa Alam, Red Sea, Egypt: implication for provenance, weathering and tectonic setting. J Afr Earth Sci 102:1–17

    Article  Google Scholar 

  • Zhao XT, Zheng MP, Li DM (2007) Formation and evolution of the Ancient Lake Xiaozhongdian in Diqing, Yunnan and its relationship with development of the ancient lake Shigu and the Modern Valley of the Jinsha River. Acta Geol Sin-Engl 81:1645–1651

    Google Scholar 

  • Zhou L, Wang Z, Gao W, Zhang K, Li H, Zhang L (2019) Provenance and tectonic setting of the Lower Cambrian Niutitang formation shales in the Yangtze Platform, South China: implications for depositional setting of shales. Geochemistry 79:384–398

    Article  Google Scholar 

  • Zimmermann U, Bahlburg H (2003) Provenance analysis and tectonic setting of the Ordovician clastic deposited in the southern Puna Basin NW Argentina. Sedimentology 50:1079–1104

    Article  Google Scholar 

  • Zou S, Wu C, Xu D, Shan Q, Zhang X, Hollings P (2016) Provenance and depositional setting of Lower Silurian siliciclastic rocks on Hainan Island, South China: implications for a passive margin environment of South China in Gondwana. J Asian Earth Sci 123:243–262

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Bu-Ali Sina University Research Council. The authors would also like to thank two anonymous reviewers that helped in the improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Rafiei.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Responsible Editor: Attila Ciner

Research highlights

• The sandstone and mudstone units are part of Neogene successions in the NW Central Iran Zone.

• A continental island arc tectonic setting was inferred during the deposition of the studied units.

• The sandstones and mudstones are mainly from an intermediate igneous source composition.

• Neogene units were deposited under arid to semi-arid paleoclimatic conditions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaheri, M., Rafiei, B. & Alipoor, R. Petrography and geochemistry of the Neogene continental redbeds in the Eshtehard area, Alborz Province, Iran: insights into tectonic setting, provenance and paleoclimate. Arab J Geosci 14, 1946 (2021). https://doi.org/10.1007/s12517-021-08236-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-08236-3

Keywords

Navigation