Skip to main content
Log in

Thermal evolution and the maturation of the deeply buried lower Paleozoic source rocks in the Tarim Basin, northwest China

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Ordovician reservoirs in the Tarim Basin have shown good exploration potential in recent years. To better understand its complex thermal history and further oil and gas exploration, we reconstructed the thermal evolution of the lower Paleozoic strata in Tarim Basin by applying new and previously published equivalent vitrinite reflectance (Requ), (U–Th)/He ages, and fission tracks. The modeled results indicated that there were three phases of heat flow evolution in the Tarim Basin: (1) The gradual cooling stage during Carboniferous-Ordovician, the heat flow was gradually decreasing during this period; (2) Rapidly raised stage in the early Permian period, the heat flow in Tabei and Tazhong uplift was raised rapidly during this period and the maximum is 51~62 mW/m2; (3) The decline stage since Middle Permian. The tectonic activity was relatively stable and the heat flow was gradually reduced during this period. The abnormal high temperature of the Permian may be the result of the magmatic activity events. Additionally, the maturity evolution plane distribution of the bottom interface of the Lower Cambrian source rock was modeled based on the new thermal histories, suggesting that the source rocks experienced rapid heating during the Caledonian period, and entered the hydrocarbon generation stage at the end of Ordovician. In the end of Mesozoic, the Cambrian source rocks reached the dry gas stage in the south of Shuntuoguole low uplift, Manjiaer depression, Tadong uplift, and Kongquehe slope. Currently, the maturity mostly maintained the characteristics of the end of the Mesozoic. The thermal history and maturity histories of the lower Paleozoic source rock in Tarim Basin provide new insights to guide oil and gas exploration of the basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bai GP, Cao BF (2014) Characteristics and distribution patterns of deep petroleum accumulations in the world. Oil Gas Geol 35(1):19–25 (in Chinese with English Abstract)

    Google Scholar 

  • Bao J, Zhu C, Wang Z (2018) Typical end-member oil derived from Cambrian-Lower Ordovician source rocks in the Tarim Basin, NW China. Pet Explor Dev 45(6):1177–1188

    Article  Google Scholar 

  • Barker CE, Goldstein RH (1990) Fluid-inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer. Geology 18(10):1003–1006

    Article  Google Scholar 

  • Barker C, Pawlewicz M, Buntebarth G et al (1986) The correlation of vitrinite reflectance with maximum temperature in humic organic matter. In: Paleogeothermics. Springer, Berlin Heidelberg, pp 79–93

    Chapter  Google Scholar 

  • Buchardt B, Lewan M (1990) Reflectance of vitrinite-like macerals as a thermal maturity index for Cambrian-Ordovician Alum Shale, Southern Scandinavia. AAPG Bull 74(4):394–406

    Google Scholar 

  • Burnham AK, Sweeney JJ (1989) A chemical kinetic model of vitrinite maturation and reflectance. Geochim Cosmochim Acta 53(10):2649–2657

    Article  Google Scholar 

  • Cai C, Zhang C, Worden RH et al (2015) Application of sulfur and carbon isotopes to oil–source rock correlation: a case study from the Tazhong Area, Tarim Basin, China. Org Geochem 83:140–152

    Article  Google Scholar 

  • Carminati E, Cavazza D, Scrocca D et al (2010) Thermal and tectonic evolution of the southern Alps (northern Italy) rifting: coupled organic matter maturity analysis and thermokinematic modeling. AAPG Bull 94:369–397

    Article  Google Scholar 

  • Chang J, Brown RW, Yuan WM et al (2014a) Mesozoic cooling history of the “Bachu Uplift” in the Tarim Basin, China: constraints from zircon fission-track thermochronology. Radiat Meas 2014(67):5–14

    Article  Google Scholar 

  • Chang X, Wang TG, Li Q et al (2014b) Charging of Ordovician reservoirs in the Halahatang Depression (Tarim Basin, NW China) determined by oil geochemistry. J Pet Geol 36(4):383–398

    Google Scholar 

  • Chen H, Wu Y, Feng Y et al (2014) Timing and chronology of hydrocarbon charging in the Ordovician of Tahe oilfield, Tarim Basin, NW China. Oil Gas Geol 35(6):806–819

    Google Scholar 

  • Chen Z, Wang TG, Li M, Yang F, Cheng B (2018) Biomarker geochemistry of crude oils and Lower Paleozoic source rocks in the Tarim Basin, western China: an oil-source rock correlation study. Mar Pet Geol 96:94–112

    Article  Google Scholar 

  • Ding CH, Zhou HB, Lu P et al (2009) The Paleozoic structural features and its evolution in the Tazhong low uplift, Xinjiang. Geotecton Metallog 33(1):148–153 (In Chinese)

    Google Scholar 

  • Dyman TS, Crovelli RA, Bartberger CE et al (2002) Worldwide estimates of deep natural gas resources based on the U.S. Geological Survey World Petroleum Assessment. Nat Resour Res 11(3):207–218

    Article  Google Scholar 

  • Farley K (2000) Helium diffusion from apatite: general behavior as illustrated by Durango fluorapatite. J Geophys Res 105:2909–2914

    Google Scholar 

  • Farley KA, Wolf RA, Silver LT (1996) The effects of long alpha-stopping distances on (U-Th)/He ages. Geochim Cosmochim Acta 60:4223–4229

    Article  Google Scholar 

  • Flowers RM, Shuster DL, Wernicke BP et al (2007) Radiation damage control on apatite (U-Th)/He dates from the Grand Canyon region, Colorado Plateau. Geology 53:447–450

    Article  Google Scholar 

  • Gleadow A, Harrison M, Kohn B, Lugo-Zazueta R, Phillips D (2015) The fish canyon tuff: a new look at an old low-temperature thermochronology standard. Earth Planet Sci Lett 424:95–108

    Article  Google Scholar 

  • Gleadow AJW, Duddy IR, Green PF, Lovering JF (1986) Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. Contrib Mineral Petrol 94(4):405–415

    Article  Google Scholar 

  • Gouveia DSV, Besse J, deLamotte DF et al (2018) Evidence of hotspot paths below Arabia and the Horn of Africa and consequences on the Red Sea opening. Earth Planet Sci Lett 487:210–220

    Article  Google Scholar 

  • Hudson SM, Hanson AD (2010) Thermal maturation and hydrocarbon migration within La Popa Basin, northeastern Mexico, with implications for other salt structures. AAPG Bull 94:273–291

    Article  Google Scholar 

  • Jacbo H (1989) Classification, structure, genesis and practical importance of natural solid oil bitumen (“migrabitumen”). Int J Coal Geol 11:65–79

    Article  Google Scholar 

  • Jia CZ (1997) Tectonic characteristics and petroleum Tarim basin China. Petroleum industry press, Beijing, pp 1–274 (in Chinese)

    Google Scholar 

  • Jia C, Wei G (2002) Structural characteristics and petroliferous features of Tarim Basin. Chin Sci Bull 47(1):1–11

    Article  Google Scholar 

  • Jiang Q, Qiu N, Zhu C (2018) Heat flow study of the Emeishan large igneous province region: implications for the geodynamics of the Emeishan mantle plume. Tectonophysics 724:11–27

    Article  Google Scholar 

  • Ketcham RA, Carter A, Donelick RA, Barbarand J, Hurford AJ (2007) Improved modeling of fission-track annealing in apatite. Am Mineral 92(5-6):799–810

    Article  Google Scholar 

  • Kosakowski P, Krzywiec PM (2013) Modelling hydrocarbon generation in the Palaeozoic and Mesozoic successions in SE Poland and West Ukraine. J Pet Geol 36:139–161

    Article  Google Scholar 

  • Laslett GM, Kendall WS, Gleadow AJW, Duddy IR (1982) (1982) Bias in measurement of fission-track length distributions. Nucl Tracks Radiat Meas 6(2–3):79–85

    Article  Google Scholar 

  • Li HL, Qiu NS, Jin ZJ et al (2005) Thermal history of Tarim Basin. Oil Gas Geol 26:613–617 (in Chinese with English abstract)

    Google Scholar 

  • Li M, Wang TG, Chen JF, He F, Yun L, Akbar S, Zhang W (2010) Paleo-heat flow evolution of the Tabei Uplift in Tarim Basin, northwest China. J Asian Earth Sci 37(1):52–66

    Article  Google Scholar 

  • Li CX, Wang XF, Li BL, He D (2013) Paleozoic fault systems of the Tazhong uplift, Tarim Basin. China. Mar Pet Geol 39(1):48–58

    Article  Google Scholar 

  • Li D, Yang S, Chen H, Cheng X, Li K, Jin X, Li Z, Li Y, Zou S (2014) Late Carboniferous crustal uplift of the Tarim plate and its constraints on the evolution of the Early Permian Tarim Large Igneous Province. Lithos 204:36–46

    Article  Google Scholar 

  • Li S, Amrani A, Pang X, Yang H, Said-Ahmad W, Zhang B, Pang Q (2015) Origin and quantitative source assessment of deep oils in the Tazhong uplift, Tarim Basin. Org Geochem 78:1–22

    Article  Google Scholar 

  • Li JW, Li Z, Qiu NS et al (2016) Carboniferous-Permian abnormal thermal evolution of the Tarim basin and its implication for deep structure and magmatic activity. Chin J Geophys 59(9):3318–3329

    Google Scholar 

  • Liu DH, Shi JY (1994) Study on the evaluation methods on high matured carbonate source rocks. Pet Explor Dev 21:113–115 (in Chinese with English abstract)

    Google Scholar 

  • Liu YJ, Neubauer F, Genser J, Ge XH, Takasu A, Yuan SH, Chang LH, Li WM (2007) Geochronology of the initiation and displacement of the Altyn Strike-Slip Fault, western China. J Asian Earth Sci 29(2-3):243–252

    Article  Google Scholar 

  • Liu SW, Lei X, Feng CG, Hao C (2016) Estimation of subsurface formation temperature in the Tarim Basin, northwest China: implications for hydrocarbon generation and preservation. Int J Earth Sci 105:1329–1351

    Article  Google Scholar 

  • Liu W, Qiu N, Xu Q et al (2018) Precambrian temperature and pressure system of Gaoshiti-Moxi block in the central paleo-uplift of Sichuan basin, southwest China. Precambrian Res 33:91–108

    Article  Google Scholar 

  • Liu Y, Qiu N, Hu W, Li H, Shen F, Yao Q (2019) Temperature and pressure characteristics of Ordovician gas condensate reservoirs in the Tazhong area, Tarim Basin, northwestern China. AAPG Bull 103(6):1351–1381

    Article  Google Scholar 

  • Liu Y, Qiu N, Li H et al (2020a) Terrestrial heat flow and crustal thermal structure in the northern slope of Tazhong uplift in Tarim Basin. Geothermics 83:1–14

    Article  Google Scholar 

  • Liu YC, Qiu NS, Chang J et al (2020b) Application of clamped isotope thermometry to thermal evolution of sedimentary basins: a case study of Shuntuoguole in Tarim Basin. Chin J Geophys 63(2):597–611

    Google Scholar 

  • Ma Q, Lü H, Jiang H et al (2015) Division program of structural units in the Paleozoic platform-basin region, Tarim Basin. Marine Orig Petrol Geol 20(1):1–9

    Google Scholar 

  • Mu SL (2009) Exploration theory, technology and practice for oil and gas in China’s marine strata: Beijing, China, vol 752. Geological Publishing House

  • Pang XQ, Liu KY, Ma ZZ et al (2012) Dynamic field division of hydrocarbon migration, accumulation and hydrocarbon enrichment rules in sedimentary basins. Acta Geol Sin 86:1559–1592

    Article  Google Scholar 

  • Petersen HI, Sherwood N, Mathiesen A, Fyhn MBW, Dau NT, Russell N, Bojesen-Koefoed JA, Nielsen LH (2009) Application of integrated vitrinite reflectance and FAMM analyses for thermal maturity assessment of the northeastern Malay Basin, offshore Vietnam: implications for petroleum prospectivity evaluation. Mar Pet Geol 26:319–332

    Article  Google Scholar 

  • Qi LX (2016) Oil and gas breakthrough in ultra-deep Ordovician carbonate formations in Shuntuoguole uplift, Tarim Basin. China. Petrol Explor 21(3):38–51 (Chinese)

    Google Scholar 

  • Qiu NS, Jiang G, Mei QH et al (2010) Tectono-thermal evolution in the Bachu Uplift, Tarim Basin, China. Acta Geol Sin-Engl Ed 84:1286–1293

    Article  Google Scholar 

  • Qiu NS, Jiang G, Mei QH, Chang J, Wang S, Wang J (2011) The Paleozoic tectonothermal evolution of the Bachu Uplift of the Tarim Basin, NW China: constraints from (U–Th)/He ages, apatite fission track and vitrinite reflectance data. J Asian Earth Sci 41(6):551–563

    Article  Google Scholar 

  • Qiu NS, Chang J, Zuo YH et al (2012) Thermal evolution and maturation of lower Paleozoic source rocks in the Tarim Basin, northwest China. AAPG Bull 96(5):789–821

    Article  Google Scholar 

  • Reiners PW, Farley KA (2001) Influence of crystal size on apatite (U-Th)/He thermochronology: an example from the Bighorn Mountains: Wyoming. Earth Planet Sci Lett 188:413–420

    Article  Google Scholar 

  • Reiners PW, Spell TL, Nicolescu S, Zanetti KA (2004) Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochim Cosmochim Acta 68:1857–1887

    Article  Google Scholar 

  • Ren JY, Zhang JX, Yang HZ et al (2011) Analysis of fault systems in the Central uplift, Tarim Basin. Acta Petrol Sin 27(1):219–230

    Google Scholar 

  • Ren JY, Yang HZ, Hu DS et al (2012) Fault activity and its controlling to marine cratonic breakup in Tarim Basin. Earth Sci 37(4):645–653

    Google Scholar 

  • Shuster DL, Flowers RM, Farley KA (2006) The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet Sci Lett 249:148–161

    Article  Google Scholar 

  • Sun Y(2017) Hydrocarbon accumulation period of Triassic reservoirs in Lunnan and surrounding area of Tarim Basin.

  • Sun YS, Jin YA, Gu QY et al (2003) Timing of paleo-oil accumulation in Tadong No. 2 Well, Tarim Basin. Pet Explor Dev 30(5):31–33 (in Chinese with English abstract)

    Google Scholar 

  • Sweeney JJ, Burnham AK (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bull 10(10):1559–1570

    Google Scholar 

  • Tang LJ, Jia CZ, Jin ZJ, Chen SP, Pi XJ, Xie HW (2004) Salt tectonic evolution and hydrocarbon accumulation of Kuqa foreland fold belt, Tarim Basin, NW China. J Pet Sci Eng 41:97–108

    Article  Google Scholar 

  • Wang F, Zhang S, Zhang B et al (2003) Maturity and its history of Cambrian marine source rocks in the Tarim Basin. Geochimica 32(5):461–468

    Google Scholar 

  • Wang YP, Zhang SC, Wang FY, Wang Z, Zhao C, Wang H, Liu J, Lu J, Geng A, Liu D (2006) Thermal cracking history by laboratory kinetic simulation of Paleozoic oil in eastern Tarim Basin, NW China, implications for the occurrence of residual oil reservoirs. Org Geochem 37:1803–1815

    Article  Google Scholar 

  • Wang TG, Dai SF, Li MJ, Zhang WB, Qiu NS, Wang GL (2010) Stratigraphic thermohistory and its implications for regional geoevolution in the Tarim Basin, NW China. Sci China Earth Sci 53:1495–1505

    Article  Google Scholar 

  • Wang TG, Song DF, Li MJ et al (2014) Natural gas source and deep gas exploration potential of the ordovician yingshan formation in the shunnan-gucheng region, Tarim basin. Oil & Gas Geology 035(006):753–762

    Google Scholar 

  • Wu L, Guan SW, Ren R et al (2016) The characteristics of Precambrian sedimentary basin and the distribution of deep source rock: a case study of Tarim Basin in Neoproterozoic and source rocks in Early Cambrian, Western China. Pet Explor Dev 43(6):905–915

    Article  Google Scholar 

  • Xiang C, Pang X, Danisík M (2013) Post-triassic thermal history of the Tazhong uplift zone in the Tarim Basin, northwest China: evidence from apatite fission-track thermochronology. Geosci Front 6:743–754

    Article  Google Scholar 

  • Xiao XM, Wilkins RWT, Liu DH et al (2000) Investigation of thermal maturity of lower Paleozoic hydrocarbon source rocks by means of vitrinite like maceral reflectance: a Tarim Basin case study. Org Geochem 31:1041–1052

    Article  Google Scholar 

  • Xiao H, Ren ZL, Wang QC et al (2011) Detrital zircon and apatite fission track study of key tectonic events of Kongquehe slope and Kuruketage uplift, north–eastern Tarim Basin, China. Chin J Geophys 54:817–827 (in Chinese with English abstract)

    Google Scholar 

  • Xiong R, Zhou J, Ni X et al (2015) Distribution prediction of Lower Cambrian Yuertusi Formation source rocks and its significance to oil and gas exploration in the Tarim Basin. Nat Gas Ind 35(10):49–56

    Google Scholar 

  • Xu YG, Wei X, Luo ZY, Liu HQ, Cao J (2014) The Early Permian Tarim Large Igneous Province: main characteristics and a plume incubation model. Lithos 204:20–35

    Article  Google Scholar 

  • Yamada R, Murakami M, Tagami T (2007) Statistical modeling of annealing kinetics of fission tracks in zircon: Reassessment of laboratory experiment. Chem Geol 236:95–122

    Article  Google Scholar 

  • Yan L, Yang M, Zhang J et al (2020) Distribution of Cambrian source rocks and evaluation and optimization of favorable zones in East Tarim Basin. Nat Gas Geosci 31(5):667–674

    Google Scholar 

  • Yang SF, Chen HL, Ji DW et al (2005) Geological process of early to middle Permian magmatism in Tarim Basin and its geodynamic significance. Geol J China Univ 11(4):504–511 (In Chinese)

    Google Scholar 

  • Yang S, Chen H, Li Z, Li YQ, Yu X, Li DX, Meng LF (2013) Early Permian Tarim large igneous province in northwest China. Sci China Earth Sci 56(12):2015–2026

    Article  Google Scholar 

  • Yang P, Wu G, Ren Z et al (2020) Tectono-thermal evolution of Cambrian–Ordovician source rocks and implications for hydrocarbon generation in the eastern Tarim Basin, NW China. J Asian Earth Sci 194:1–15

    Article  Google Scholar 

  • Yao G, Wu X, Sun Z et al (2018) Status and prospects of exploration and exploitation key technologies of the deep petroleum resources in onshore China. J Nat Gas Geosci 3(1):25–35 (Chinese)

    Article  Google Scholar 

  • Yu BS, Zhou LF (2005) Distribution of hydrocarbon source rocks of Cambrian-Ordovician in sequence stratigraphic framework in Tarim Basin. Chin J Geophys 1(1):59–61

    Google Scholar 

  • Yu J, Zhang J, Shi B (2010) A study on tectono-thermal evolution history of Bachu uplift in the Tarim Basin. Chin J Geophys 53(5):805–814

    Article  Google Scholar 

  • Zhang BM, Zhang SC, Yin LM et al (2005) Bioprecursors of the Lianglitake-type source rocks from the Late Ordovician of Tarim Basin (in Chinese). Acta Micropaleontol Sin 22:243–250

    Google Scholar 

  • Zhang S, Huang H, Su J, Zhu G, Wang X, Larter S (2014) Geochemistry of paleozoic marine oils from the Tarim Basin, NW China. Part 4: paleo-biodegradation and oil charge mixing. Org Geochem 67:41–57

    Article  Google Scholar 

  • Zheng J, Li B, Liu Y et al (2018) Study on thermal evolution modeling of lower Cambrian Yuertusi source rock, Tarim Basin. Reserv Rval Develop 8(6):7–12 (In Chinese)

    Google Scholar 

  • Zhou X, Lü X, Quan H, Qian W, Mu X, Chen K, Wang Z, Bai Z (2019) Influence factors and an evaluation method about breakthrough pressure of carbonate rocks: an experimental study on the Ordovician of carbonate rock from the Kalpin area, Tarim Basin, China. Mar Pet Geol 104:313–330

    Article  Google Scholar 

  • Zhu G, Chen F, Chen Z, Zhang Y, Xing X, Tao X, Ma D (2016) Discovery and basic characteristics of high-quality source rocks found in the Yuertusi formation of the Cambrian in Tarim Basin, China. J Nat Gas Geosci 1:21–33

    Article  Google Scholar 

  • Zhu C, Hu S, Qiu N et al (2016a) Thermal history of the Sichuan basin, SW China: evidence from deep boreholes. Sci China Earth Sci 59(1):70–82 (in Chinese with English abstract)

    Article  Google Scholar 

  • Zhu C, Hu S, Qiu N et al (2016b) Geothermal constraints on Emeishan mantle plume magmatism: paleotemperature reconstruction of the Sichuan basin, SW China. Int J Earth Sci 107:71–88

    Article  Google Scholar 

  • Zhu G, Cao Y, Yan L (2018) Potential and favorable areas of petroleum exploration of ultra-deep marine strata more than 8000 m deep in the Tarim Basin, Northwest China. J Nat Gas Geosci 3(6):321–337

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (42002142) and Heilongjiang Province talent introduction research start-up funds (1305021851).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchen Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Responsible Editor: Santanu Banerjee

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Dong, S. & Zhao, C. Thermal evolution and the maturation of the deeply buried lower Paleozoic source rocks in the Tarim Basin, northwest China. Arab J Geosci 14, 1238 (2021). https://doi.org/10.1007/s12517-021-07562-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-07562-w

Keywords

Navigation