Skip to main content
Log in

Exsolution intergrowth of cpx-opx and pseudosection modelling of two-pyroxene mafic granulite from Daltonganj of Chhotanagpur Granite Gneiss Complex, Eastern India

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

In this study, we reconstruct for the first time the evolution of a two-pyroxene mafic granulite from the Daltonganj of Chhotanagpur Granite Gneiss Complex (CGGC). Transmission electron microscopy (TEM) revealed that some of the clinopyroxene have exsolution texture, where orthopyroxene occurs as thin lamellae within the porphyroblast of clinopyroxene. To tightly constrain the P-T conditions at which exsolution lamellae developed after the metamorphic peak, we have applied both conventional and multi-equilibrium thermobarometry, as well as forward thermodynamic modelling. Results from multi-equilibrium thermobarometry, using the software THERMOCALC, suggest peak conditions of the mafic granulite at average pressure-temperature (PTav) conditions of 6.7 ± 1.19 kbar/814 ± 60 °C. In contrast, exsolution bearing opx-cpx minerals crystallised at relatively lower temperature (772 ± 14 °C), determined by the conventional geothermometers. The peak to retrograde evolution of these mafic granulites is constrained through phase equilibrium modelling in the NCKFMASHTO (Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O) model system using the software Perple_X. Phase equilibria results of peak conditions (i.e. 6.0–6.78 kbar and 775–808 °C) are consistent with respect to those obtained through multi-equilibrium and conventional thermobarometry, while the retrograde path is defined down to ~4.5 kbar and ~540 °C. Our results have twofold implications: (i) they show how the integrating of different geothermobarometric methods is the best proxy to tightly constrain the evolution of high-grade metamorphic rocks, and (ii) they pavement to new constraints on the Paleoproterozoic to Neoproterozoic evolution of the CGGC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acharyya SK (2003) The nature of Mesoproterozoic Central Indian Tectonic Zone with exhumed and reworked older granulites. Gondwana Res 6(2):197–214. https://doi.org/10.1016/S1342-937X(05)70970-9

    Article  Google Scholar 

  • Basu Sarbadhikari A, Bhowmik SK (2008) Constraining the metamorphic evolution of a cryptic hot Mesoproterozoic orogen in the Central Indian Tectonic Zone, using P–T pseudosection modeling of mafic intrusions and hot reworked granulites. Precambrian Res 162:128–149. https://doi.org/10.1016/j.precamres.2007.07.014

    Article  Google Scholar 

  • Bhowmik SK, Roy A (2003) Garnetiferous metabasites from the Sausar Mobile Belt: petrology, PT path and implications for the tectonothermal evolution of the Central Indian Tectonic Zone. J Petrol 44(3):387–420. https://doi.org/10.1093/petrology/44.3.387

    Article  Google Scholar 

  • Bhowmik SK, Basu Sarbadhikari A, Spiering B, Raith MM (2005) Mesoproterozoic reworking of Palaeoproterozoic ultrahigh-temperature granulites in the Central Indian Tectonic Zone and its implications. J Petrol 46(6):1085–1119. https://doi.org/10.1093/petrology/egi011

    Article  Google Scholar 

  • Bose S, Das K, Chakraborty S, Miura H (2011) Petrology and Geochemistry of Metamorphosed Basic Intrusives from Chilka Lake Granulites, Eastern Ghats Belt, India: Implications for Rodinia breakup. In: Dyke Swarms: Keys for Geodynamic Interpretation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12496-9_14

    Chapter  Google Scholar 

  • Boyd FR, Brown GM (1969) Electron-probe study of pyroxene exsolution. Mineral Soc America Special Paper 2:211–216

    Google Scholar 

  • Bucher K, Grapes R (2011) Metamorphism of Mafic Rocks. In: Petrogenesis of metamorphic rocks. Springer, Berlin, Heidelberg, pp 339–393. https://doi.org/10.1007/978-3-540-74169-5_9

    Chapter  Google Scholar 

  • Chakraborty T, Upadhyay D, Ranjan S, Pruseth KL, Nanda JK (2019) The geological evolution of the Gangpur Schist Belt, eastern India: constraints on the formation of the Greater Indian Landmass in the Proterozoic. J Metamorph Geol 37:113–151. https://doi.org/10.1111/jmg.12452

    Article  Google Scholar 

  • Chatterjee N, Ghose NC (2011) Extensive Early Neoproterozoic high-grade metamorphism in North Chotanagpur Gneissic Complex of the Central Indian Tectonic Zone. Gondwana Res 20:362–379. https://doi.org/10.1016/j.gr.2010.12.003

    Article  Google Scholar 

  • Chatterjee N, Crowley JL, Ghose NC (2008) Geochronology of the 1.55 Ga Bengal anorthosite and Grenvillian metamorphism in the Chotanagpur gneissic complex, eastern India. Precambrian Res 161(3-4):303–316. https://doi.org/10.1016/j.precamres.2007.09.005

    Article  Google Scholar 

  • Chatterjee N, Banerjee M, Bhattacharya A, Maji AK (2010) Monazite chronology, metamorphism-anatexis and tectonic relevance of the mid-Neoproterozoic Eastern Indian Tectonic Zone. Precambrian Res 179(1):99–120. https://doi.org/10.1016/j.precamres.2010.02.013

    Article  Google Scholar 

  • Colás V, Padrón-Navarta JA, González-Jiménez JM, Griffin WL, Fanlo I, O’reilly SY, Gervilla F, Proenza JA, Pearson NJ, Escayola MP (2016) Compositional effects on the solubility of minor and trace elements in oxide spinel minerals: insights from crystal partition coefficients in chromite exsolution. Am Mineral 101:1360–1372. https://doi.org/10.2138/am-2016-5611

    Article  Google Scholar 

  • Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541. https://doi.org/10.1016/j.epsl.2005.04.033

    Article  Google Scholar 

  • Connolly JAD (2009) The geodynamic equation of state: what and how. Geochem Geophys Geosyst 10(10):1–19. https://doi.org/10.1029/2009GC002540

    Article  Google Scholar 

  • Das S, Nasipuri P, Bhattacharya A, Swaminathan S (2009) The thrust-contact between the Eastern Ghats belt and the adjoining Bastar craton (Eastern India): evidence from mafic granulites and tectonic implications. Precambrian Res 162:70–85. https://doi.org/10.1016/j.precamres.2007.07.013

    Article  Google Scholar 

  • Dasgupta S, Sengupta P, Fukuoka M, Bhattacharya PK (1991) Mafic granulites from the Eastern ghats, India: further evidence for extremely high temperature crustal metamorphism. J Geol 99(1):124–133. https://doi.org/10.1086/629478

    Article  Google Scholar 

  • Degraef M, Mchenry ME (2012) An introduction to crystallography, diffraction, and symmetry, 2nd edn. Cambridge University Press, Cambridge, pp 1–739

    Google Scholar 

  • Dey A, Mukherjee S, Sanyal S, Ibanez-Mejia M, Sengupta P (2017) Deciphering sedimentary provenance and timing of sedimentation from a suite of metapelites from the Chhotanagpur Granite Gneissic Complex, India: implications for proterozoic tectonics in the East-Central Part of the Indian Shield. In: Mazumder R (ed) Sediment Provenance; Influences on Compositional Change from Source to Sink. Elsevier Ltd, pp 453–486. https://doi.org/10.1016/B978-0-12-803386-9.00016-2

  • Dey A, Karmakar S, Ibanez-Mejia M, Mukherjee S, Sanyal S, Sengupta P (2019) Petrology and geochronology of a suite of pelitic granulites from parts of the Chotanagpur Granite Gneiss Complex, eastern India: evidence for Stenian-Tonian reworking of a late Paleoproterozoic crust. Geol J 55(4):2851–2880. https://doi.org/10.1002/gj.3552

    Article  Google Scholar 

  • Dong J, Wei C, Chen J, Zhang J (2020) P–T–t Path of Garnetites in South Altyn Tagh, West China: A complete record of the ultradeep subduction and exhumation of continental crust. J Geophys Res Solid Earth 125(2) (In press). https://doi.org/10.1029/2019JB018881

  • Dwivedi SB, Theunuo K (2011) Two-pyroxene mafic granulites from Patharkhang, Shillong–Meghalaya Gneissic Complex. Curr Sci 100(1):100–105

    Google Scholar 

  • Dwivedi SB, Kumar RR, Srivastava M (2019) Multistage gedrite in gedrite-hypersthene bearing high-grade granulites from Daltonganj, Chhotanagpur Granite Gneissic Complex, Jharkhand, as evident from TEM and textural relations. J Earth Syst Sci 128(41):1–14. https://doi.org/10.1007/s12040-018-1065-6

    Article  Google Scholar 

  • Fuhrman ML, Lindsley DH (1988) Ternary-Feldspar modeling and thermometry. Am Mineral 73:201–215

    Google Scholar 

  • Ghose NC (1983) Geology, tectonics, and evolution of the Chhotanagpur Granite Gneiss Complex, Eastern India. In: Sinha-Roy S (ed) Structure and Tectonics of Precambrian Rocks of India, Recent Researches in Geology, vol 10. Hindustan Publishing Corporation, Delhi, pp 211–247

    Google Scholar 

  • Ghose NC (1992) Chhotanagpur gneiss granulite complex Eastern India: present status and future Prospect. Indian J Geol 84:100–121

    Google Scholar 

  • Giacomini F, Bomparola RM, Ghezzo C (2005) Petrology and geochronology of metabasites with eclogite facies relics from NE Sardinia: constraints for the Palaeozoic evolution of Southern Europe. Lithos 82(1-2):221–248. https://doi.org/10.1016/j.lithos.2004.12.013

    Article  Google Scholar 

  • Giacomini F, Dallai L, Carminati E, Tiepolo M, Ghezzo C (2008) Exhumation of a Variscan orogenic complex: insights into the composite granulitic–amphibolitic metamorphic basement of south-east Corsica (France). J Metamorph Geol 26(4):403–436. https://doi.org/10.1111/j.1525-1314.2008.00768.x

    Article  Google Scholar 

  • Green ECR, White RW, Diener JFA, Powell R, Holland TJB, Palin RM (2016) Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks. J Metamorph Geol 34(9):845–869. https://doi.org/10.1111/jmg.12211

    Article  Google Scholar 

  • Gross AOMS, Droop GTR, Porcher CC, Fernandes LAD (2009) Petrology and thermobarometry of mafic granulites and migmatites from the Chafalote metamorphic suite: new insights into the Neoproterozoic P-T evolution of the Uruguayan-Sul-Rio-Grandense shield. Precambrian Res 170:157–174. https://doi.org/10.1016/j.precamres.2009.01.011

    Article  Google Scholar 

  • Haifler J, Kotková J (2016) UHP–UHT peak conditions and near-adiabatic exhumation path of diamond-bearing garnet-clinopyroxene rocks from the Eger crystalline complex, North Bohemian Massif. Lithos 248–251:366–381. https://doi.org/10.1016/j.lithos.2016.02.001

    Article  Google Scholar 

  • Harley SL (1987) A pyroxene-bearing meta-ironstone and other pyroxene–granulites from Tonagh Island, Enderby Land, Antarctica: further evidence for very high temperature (>980°C) Archaean regional metamorphism in the Napier Complex. J Metamorph Geol 5:341–356. https://doi.org/10.1111/j.1525-1314.1987.tb00389.x

    Article  Google Scholar 

  • Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumacher JC, Welch MD (2012) IMA report, nomenclature of the amphibole supergroup. Am Mineral 97:2031–2048. https://doi.org/10.2138/am.2012.4276

    Article  Google Scholar 

  • Hoatson DM, Sun S, Claouélong JC (2005) Proterozoic mafic-ultramafic intrusions in the Arunta Region, central Australia: Part 1: Geological setting and mineral potential. Precambrian Res 142:93–133. https://doi.org/10.1016/j.precamres.2005.09.004

    Article  Google Scholar 

  • Holland TJB, Powell RTJB (1998) An internally consistent thermodynamic data set phases of petrological interest. J Met Geol 16(3):309–343

  • Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383. https://doi.org/10.1111/j.1525-1314.2010.00923.x

    Article  Google Scholar 

  • Kamineni DC, Rao AT (1988) Sapphirine granulites from the Kakanuru area, Eastern Ghats, India. Am Mineral 73:692–700

    Google Scholar 

  • Karmakar S, Bose S, Basu Sarbadhikari A, Das K (2011) Evolution of granulite enclaves and associated gneisses from Purulia, Chhotanagpur Granite Gneiss Complex, India: evidence for 990-940 Ma tectonothermal event(s) at the eastern India cratonic fringe zone. J Asian Earth Sci 41(1):69–88. https://doi.org/10.1016/j.jseaes.2010.12.006

    Article  Google Scholar 

  • Kretz R (1982) Transfer and exchange equilibria in a portion of the pyroxene quadrilateral as deduced from natural and experimental data. Geochim Cosmochim Acta 46:411–422. https://doi.org/10.1016/0016-7037(82)90232-0

    Article  Google Scholar 

  • Kumar RR, Dwivedi SB (2019) EPMA Monazite geochronology of the granulites from Daltonganj, Eastern India and its correlation with Rodinia Supercontinent. J Earth Syst Sci 128:234 (1-22). https://doi.org/10.1007/s12040-019-1254-y

    Article  Google Scholar 

  • Lenaz D, Elicogna MV, Hålenius U, O’driscol B (2016) Structural parameters of Cr-bearing spinels and pleonaste from the Cuillin igneous complex Isle of Skye, Scotland: implications for metamorphic and cooling history. Mineral Mag 80:749–763. https://doi.org/10.1180/minmag.2016.080.021

    Article  Google Scholar 

  • Lepage LD (2003) ILMAT: an Excel worksheet for ilmenite–magnetite geothermometry and geobarometry. Comput and Geosci 29(5):673–678. https://doi.org/10.1016/S0098-3004(03)00042-6

    Article  Google Scholar 

  • Maji AK, Goon S, Bhattacharya A, Mishra B, Mahato S, Bernhardt HJ (2008) Proterozoic polyphase metamorphism in the Chhotanagpur gneissic complex (India), and implication for trans-continental Gondwanaland correlation. Precambrian Res 162:385–402. https://doi.org/10.1016/j.precamres.2007.10.002

    Article  Google Scholar 

  • Mallik AK, Gupta SN, Ray Barman T (1991) Dating of early Precambrian granite–greenstonecomplex of the Eastern Indian Precambrian shield with special reference to the Chotanagpur Granite Gneiss Complex. Rec Geol Surv India 125(2):20–21

    Google Scholar 

  • Mazumdar SK (1976) A summary of the Precambrian geology of the Khasi Hills, Meghalaya. Geol Surv India, Misc Publ 23(2):311–324

    Google Scholar 

  • Morimoto N (1988) The Nomenclature of Pyroxenes. Mineral Mag 52:425–433

    Article  Google Scholar 

  • Mukherjee S, Dey A, Sanyal S, Ibanez-Mejia M, Dutta U, Sengupta P (2017) Petrology and U–Pb geochronology of zircon in a suite of charnockitic gneisses from parts of the Chotanagpur Granite Gneiss Complex (CGGC): evidence for the reworking of a Mesoproterozoic basement during the formation of the Rodinia supercontinent. From: Pant NC, Dasgupta S (eds) Crustal Evolution of India and Antarctica: The Supercontinent Connection. J Geol Soc, London, Spl Publ 457: 197-232. https://doi.org/10.1144/SP457.6

  • Mukherjee S, Dey A, Sanyal S, Sengupta P (2018) Tectonothermal imprints in a suite of mafic dykes from the Chotanagpur Granite Gneissic Complex (CGGC), Jharkhand, India: evidence for late Tonian reworking of an early Tonian continental crust. Lithos 320-321:490–514. https://doi.org/10.1016/j.lithos.2018.09.014

    Article  Google Scholar 

  • Murthy MVN, Mazumdar SK, Bhaumik M (1976) Significance of tectonic trends in the geological evolution of the Meghalaya uplands since the Precambrian. Geol Surv India, Misc Publ 23:471–484

    Google Scholar 

  • Pandey R, Chalapathi Rao NV, Pandit D, Sahoo S, Dhote P (2018) Imprints of modal metasomatism in the Post-Deccan subcontinental lithospheric mantle: petrological evidence from an ultramafic xenolith in an Eocene lamprophyre, NW India. Geol Soc London, Spec Publ 463(1):117–136. https://doi.org/10.1144/SP463.6

    Article  Google Scholar 

  • Pattison DRM, Chacko T, Farquhar J, Mcfarlane CRM (2003) Temperatures of Granulite-facies metamorphism: constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange. J Petrol 44(5):867–900. https://doi.org/10.1093/petrology/44.5.867

    Article  Google Scholar 

  • Powell R (1978) Thermodynamics of pyroxene geotherms. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 288(1355):457–469

    Google Scholar 

  • Powell R, Holland TJB (1988) An internally consistent thermodynamic dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program. J Metamorph Geol 6:173–204. https://doi.org/10.1111/j.1525-1314.1988.tb00415.x

    Article  Google Scholar 

  • Prakash D, Prakash S, Sachan HK (2010) Petrological evolution of the high pressure and ultrahigh-temperature mafic granulites from Karur, southern India: evidence for decompressive and cooling retrograde trajectories. Mineral Petrol 100(1):35–53. https://doi.org/10.1007/s00710-010-0123-9

    Article  Google Scholar 

  • Proyer A, Krenn K, Hoinkes G (2009) Oriented precipitates of quartz and amphibole in clinopyroxene of metabasites from the Greek Rhodope: a product of open system precipitation during eclogite granulite-amphibolite Transition. J Metamorph Geol 27:639–654. https://doi.org/10.1111/j.1525-1314.2009.00844.x

    Article  Google Scholar 

  • Raase P, Raith M, Ackermand D, Lal RK (1986) Progressive metamorphism of mafic rocks from greenschist to granulite facies in the Dharwar craton of South India. J Geol 94(2):261–282. https://doi.org/10.1086/629027

    Article  Google Scholar 

  • Rajesh HM (2006) Progressive or continual exsolution in pyroxenes: an indicator of polybaric igneous crystallisation for the perinthatta anorthositic gabbro, northern Kerala, southwestern India. J Asian Earth Sci 26:541–553. https://doi.org/10.1016/j.jseaes.2004.11.004

    Article  Google Scholar 

  • Ray Barman T, Bishui PK (1994) Dating of Chhotanagpur gneissic complex of eastern Indian Precambrian shield. Rec Geol Surv India 127(2):25–27

    Google Scholar 

  • Rekha S, Upadhyay D, Bhattacharya A, Kooijman E, Goon S, Mahato S, Pant NC (2011) Lithostructural and chronological constraints for tectonic restoration of Proterozoic accretion in the Eastern Indian Precambrian shield. Precambrian Res 187:313–333. https://doi.org/10.1016/j.precamres.2011.03.015

    Article  Google Scholar 

  • Robinson PT (1980) The composition space of terrestrial pyroxenes – internal and external limits. In: Prewitt CT (ed) Rev Mineral 7, Pyroxenes. Mineralogical Society of America, Washington DC, pp 419–494

    Chapter  Google Scholar 

  • Saikia A, Gogoi B, Kaulina T, Lialina L, Bayanova T, Ahmad M (2017) Geochemical and U–Pb zircon age characterisation of granites of the Bathani Volcano Sedimentary sequence, Chotanagpur Granite Gneiss Complex, eastern India: vestiges of the Nuna supercontinent in the Central Indian Tectonic Zone. Geol Soc Lond Spec Publ 457:233–252. https://doi.org/10.1144/SP457.11

    Article  Google Scholar 

  • Sanyal S, Sengupta P (2012) Metamorphic evolution of the Chotanagpur Granite Gneiss Complex of the East Indian Shield: current status. In: Mazumder R, Saha D (eds) Palaeoproterozoic of India. Geol Soc, London, Spl Publ 365(1):117-145. https://doi.org/10.1144/SP365.7

  • Schenk V (1981) Synchronous uplift of the lower crust of the Ivrea Zone and of southern Calabria and its possible consequences for the Hercynian orogeny in southern Europe. Earth Planet Sci Lett 56:305–320. https://doi.org/10.1016/0012-821X(81)90136-9

    Article  Google Scholar 

  • Schertl HP, Sobolev NV (2013) The Kokchetav Massif, Kazakhstan: “type locality” of diamond-bearing UHP metamorphic rocks. J Asian Earth Sci 63:5–38. https://doi.org/10.1016/j.jseaes.2012.10.032

    Article  Google Scholar 

  • Spencer KJ, Lindsley DH (1981) A solution model for coexisting iron-titanium oxides. Am Mineral 66(11-12):1189–1201 0003-004X/81/1112-1189$02.00

    Google Scholar 

  • Tursi F, Festa V, Fornelli A, Micheletti F, Spiess R (2018) Syn-shearing mobility of major elements in ductile shear zones: state of the art for felsic deformed protoliths. Period Mineral 87(3):289–308. https://doi.org/10.2451/2018PM811

    Article  Google Scholar 

  • Viti C, Mellini M, Rumori C (2005) Exsolution and hydration of pyroxenes from partially serpentinised harzburgites. Mineral Mag 69(4):491–507. https://doi.org/10.1180/0026461056940265

    Article  Google Scholar 

  • Wells PRA (1977) Pyroxene thermometry in simple and complex system. Contrib Mineral Petrol 62:129–139. https://doi.org/10.1007/BF00372872

    Article  Google Scholar 

  • White RW, Powell R (2011) On the interpretation of retrograde reaction textures in granulite facies rocks. J Metamorph Geol 29:131–149. https://doi.org/10.1111/j.1525-1314.2010.00905.x

    Article  Google Scholar 

  • White RW, Powell R, Holland TJB, Worley B (2000) The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. J Metamorph Geol 18(5):497–512. https://doi.org/10.1046/j.1525-1314.2000.00269.x

    Article  Google Scholar 

  • White RW, Powell R, Holland TJB, Johnson TE Green ECR (2014) New mineral activity-composition relations for thermodynamic calculations in metapelitic. J Metamorph Geol 32(3):261–286. https://doi.org/10.1111/jmg.12071

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95(1):185–187. https://doi.org/10.2138/am.2010.3371

    Article  Google Scholar 

  • Wood BJ, Banno S (1973) Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contrib Mineral Petrol 42:109–124

    Article  Google Scholar 

  • Xiong F, Dilek Y, Wirth R, Xu X, Yang J (2020) Opx–Cpx exsolution textures in lherzolites of the Cretaceous Purang Ophiolite (S. Tibet, China), and the deep mantle origin of Neotethyan abyssal peridotites. Int Geol Rev 62:665–682. https://doi.org/10.1080/00206814.2019.1627678

    Article  Google Scholar 

  • Zhang JX, Mattinson CG, Meng FC, Wan YS (2005) An early Paleozoic HP/HT granulite-garnet peridotite association in the south Altyn Tagh, NW China. P–T history and U-Pb geochronology. J Metamorph Geol 23:491–510. https://doi.org/10.1111/j.1525-1314.2005.00585.x

    Article  Google Scholar 

  • Zhu YF, Ogasawara Y (2002) Phlogopite and coesite exsolution from super-silicic clinopyroxene. Int Geol Rev 44:831–836. https://doi.org/10.2747/0020-6814.44.9.831

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the Director, Indian Institute of Technology (BHU), for providing infrastructure and funds to complete this work. R.R. Kumar is also grateful to the UGC-JRF scheme for providing financial support for the present work. The authors express their gratitude to Professor N.V. Chalapathi Rao and Dr Dinesh Pandit from Mantle Petrology Laboratory, Department of Geology (CAS), Institute of Science, BHU, for providing the EPMA analyses facility. We are thankful for the anonymous reviewers and editor of the journal for their constructive comments to improve the manuscript in the present form.

Author information

Authors and Affiliations

Authors

Contributions

Ravi Ranjan Kumar: the area was visited for sample collection. Analytical works such as EPMA, TEM, SEM and XRF were performed for data collection. Paper writing and the interpretation of evolutionary history. Shyam Bihari Dwivedi: providing valuable suggestions in paper writing and preparing the theme of this paper.

Corresponding author

Correspondence to Ravi Ranjan Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible editor: Domenico M. Doronzo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R.R., Dwivedi, S.B. Exsolution intergrowth of cpx-opx and pseudosection modelling of two-pyroxene mafic granulite from Daltonganj of Chhotanagpur Granite Gneiss Complex, Eastern India. Arab J Geosci 14, 767 (2021). https://doi.org/10.1007/s12517-021-07093-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-07093-4

Keywords

Navigation