Skip to main content

Advertisement

Log in

Identifying geochemical anomalies and spatial distribution of gold and associated elements in the Zuru Schist Belt, northwest Nigeria

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Zuru Schist Belt is one of the gold-bearing schist belts in northwestern Nigeria. The gold mineralisation is mainly associated with NE-trending shear zones and is hosted in veins of quartz, quartz-tourmaline and quartz-feldspar. In this study, the spatial pattern of gold and associated elements was identified and delineated through statistical analysis of trace element geochemical data. Statistical analyses including spearman correlation, principal component analysis and hierarchical cluster analysis were applied on the geochemical data to decipher and interpret multi-element association related with gold mineralisation. Spearman correlation revealed significant positive correlation amongst Co, Mn, Fe, V, Ni and Zn (>0.70), while Au has moderate correlation with Ag, Bi and Cu (>0.30). Based on principal component analysis and hierarchical cluster analysis, three element associations can be recognised: (a) Zn-Ni-Co-Mn-Fe-V, (b) Au-Ag-Bi-Pb and (c) Zn-U-Th-Sr-La-Ba. The first two multi-element associations are related to gold mineralisation. The multi-element association of Zn-Ni-Co-Mn-Fe-V signifies lithogenic factor and associated hydrothermal alteration, while Au-Ag-Bi-Pb is indicative of gold mineralisation. The combination of Au and associated elements (Ag, Bi and Pb), which was achieved through the use of uni-element thresholds (median+2 median absolute deviation) in multi-element halo technique, enabled the mapping of multi-element geochemical anomaly. The uni- and multi-element geochemical anomaly maps show geochemical anomalies in the northern, central and southern parts of the area. These anomalies, largely restricted to metasedimentary rocks notably foliated quartzite, schist, and phyllite, represent where further exploration should be focused with more attention particularly in the northern part where higher concentration than previously reported was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data is included in the manuscript.

References

  • Aitchison J (1986) The statistical analysis of compositional data. Chapman & Hall, London

    Google Scholar 

  • Aitchison J, Barceló-Vidal C, Martín-Fernández J, Pawlowsky-Glahn V (2000) Logratio analysis and compositional distance. Math Geol 32:271–275

    Google Scholar 

  • Akopyank K, Petrosyan V, Grigoryan R, Melkom Melkomian D (2017) Environmental characterization of arsenic and lead in residential soil of mining and smelting towns of Northern Armenia. J Geochemical Explor 184:97–109. https://doi.org/10.1016/j.gexplo.2017.10.010

    Article  Google Scholar 

  • Ali K, Cheng Q, Li W, Chen Y (2006) Multi-element association analysis of stream sediment geochemistry data for predicting gold deposits in south-central Yunnan Province, China

  • Beus AA, Grigorian SV (1977) Geochemical exploration methods for mineral deposits. Applied Publishing Ltd, Moscow

    Google Scholar 

  • Bierlein FP, Arne DC, McKnight JL (2000) Wall-rock petrology and geochemistry in alteration halos associated with mesothermal gold mineralization, Central Victoria, Australia. Econ Geol 95:283–312

    Google Scholar 

  • Bierlein FP, Maher S (2001) Orogenic disseminated gold in Phanerozoic fold belts: examples from Victoria, Australia, and elsewhere. Ore Geol Rev 18:113–148

    Google Scholar 

  • Carranza EJM (2008) Geochemical anomaly and mineral prospectivity mapping in GIS. Elsevier, Amsterdam

    Google Scholar 

  • Carranza EJM (2011) Analysis and mapping of geochemical anomalies using Logratio-transformed stream sediment data with censored values. J Geochemical Explor 110:167–185. https://doi.org/10.1016/j.gexplo.2011.05.007

    Article  Google Scholar 

  • Chen S, Hattori K, Grunsky EC (2018) Identification of sandstone above blind uranium deposits using multivariate statistical assessment of compositional data, Athabasca Basin, Canada. J Geochemical Explor 188:229–239

    Google Scholar 

  • Cheng Q, Bonham-carter G, Wang W, Zhang S (2011) A spatially weighted principal component analysis for multi-element geochemical data for mapping locations of felsic intrusions in the Gejiu mineral district of Yunnan , China. Comput Geosci 37:662–669. https://doi.org/10.1016/j.cageo.2010.11.001

    Article  Google Scholar 

  • Cheng Q, Xu Y, Grunsky E (1999) Integrated spatial and spectral analysis for geochemical anomaly separation. In: Lippard SJ, Naess A, Sinding-Larsen R (eds) Proceedings of the Fifth Annual Conference of the International Association for Mathematical Geology. Trondheim, Norway, pp 87–92

    Google Scholar 

  • Cohen DR, Kelley DL, Anand R, Coker WB (2010) Major advances in exploration geochemistry, 1998–2007. Geochemistry Explor Environ Anal 10:3–16

    Google Scholar 

  • Craw D (2002) Geochemistry of late metamorphic hydrothermal alteration and graphitisation of host rock , Macraes gold mine, Otago Schist, New Zealand. Chem Geol 191:257–275

    Google Scholar 

  • Craw D, Upton P, Mackenzie DJ (2016) Hydrothermal alteration styles in ancient and modern orogenic gold deposits. New Zealand New Zeal J Geol Geophys 8306:11–26. https://doi.org/10.1080/00288300909509874

    Article  Google Scholar 

  • Dada SS (1998) Crust-forming ages and Proterozoic crustal evolution in Nigeria: a reappraisal of current interpretations. Precambrian Res 87:65–74

    Google Scholar 

  • Danbatta UA (2008) Precambrian crustal development in the north western part of Zuru schist belt, northwestern Nigeria. J Min Geol 44:45–56

    Google Scholar 

  • Danbatta UA, Garba ML (2007) Geochemistry and petrogenesis of Precambrian amphibolites in the Zuru schist belt, northwestern Nigeria. J Min Geol 43:23–30

    Google Scholar 

  • Deng J, Wang Q, Yang L, Wang Y, Gong Q, Liu H (2010) Delineation and explanation of geochemical anomalies using fractal models in the Heqing area , Yunnan Province , China. J Geochemical Explor 105:95–105. https://doi.org/10.1016/j.gexplo.2010.04.005

    Article  Google Scholar 

  • Dhanasekarapandian M, Chandran S, Devi DS, Kumar V (2016) Spatial and temporal variation of groundwater quality and its suitability for irrigation and drinking purpose using GIS and WQI in an urban fringe. J African Earth Sci. 124:270–288. https://doi.org/10.1016/j.jafrearsci.2016.08.015

    Article  Google Scholar 

  • Elueze AA (1992) Rift system for Proterozoic schist belts in Nigeria. Tectonophysics 209:167–169

    Google Scholar 

  • Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut 114:313–324

    Google Scholar 

  • Fagbohun BJ, Omitogun AA, Bamisaiye OA, Ayoola FJ (2020b) Remote detection and interpretation of structural style of the Zuru Schist Belt. Northwest Nigeria Geocarto Int:1–21. https://doi.org/10.1080/10106049.2020.1753822

  • Fagbohun BJ, Omitogun AA, Bamisaiye OA, Ayoola FJ (2020a) Gold potential of the Pan African Trans-Sahara belt and prospect for further exploration. Ore Geol Rev 116:103260. https://doi.org/10.1016/j.oregeorev.2019.103260

    Article  Google Scholar 

  • Ferré E, Déléris J, Bouchez JL et al (1996) The Pan-African reactivation of Eburnean and Archaean provinces in Nigeria: structural and isotopic data. J Geol Soc Lond 153:719–728. https://doi.org/10.1144/gsjgs.153.5.0719

    Article  Google Scholar 

  • Ferré E, Gleizes G, Caby R (2002) Obliquely convergent tectonics and granite emplacement in the Trans-Saharan belt of Eastern Nigeria : a synthesis. Precambrian Res 114:199–219

    Google Scholar 

  • Filzmoser P, Hron K, Reimann C (2009) Principal component analysis for compositional data with outliers. 621–632. https://doi.org/10.1002/env

  • Fitches WR, Ajibade AC, Egbuniwe IG, Holt RW, Wright JB (1985) Late Proterozoic schist belts and plutonism in NW Nigeria. J Geol Soc Lond 142:319–337. https://doi.org/10.1144/gsjgs.142.2.0319

    Article  Google Scholar 

  • Franke R (1982) Scattered data interpolation: tests of some methods. Math Comput 38:181–200

    Google Scholar 

  • Garba I (2003) Geochemical characteristics of mesothermal gold mineralisation in the Pan-African (600 ± 150 Ma) basement of Nigeria. Appl Earth Sci (Trans Inst Min Met B) 112:319–326. https://doi.org/10.1179/0371745032250031

    Article  Google Scholar 

  • Garba I (2000) Origin of Pan-African mesothermal gold mineralisation at Bin Yauri , Nigeria. J African Earth Sci 31:433–449

    Google Scholar 

  • Garba I (1996) Tourmalinization related to Late Proterozoic-Early Palaeozoic lode gold mineralization in the Bin Yauri area, Nigeria. Miner Depos 209:201–209

    Google Scholar 

  • Garba I (1988) The variety and possible origin of the Nigerian gold mineralization. J African Earth Sci 7:981–986

    Google Scholar 

  • Garba I, Akande SO (1992) The origin and significance of non-aqueous CO2 fluid inclusions in the auriferous veins of Bin Yauri, northwestern Nigeria. Miner Depos 255:249–255

    Google Scholar 

  • Ghasemzadeh S, Maghsoudi A, Yousefi M, Mihalasky MJ (2019) Stream sediment geochemical data analysis for district-scale mineral exploration targeting: measuring the performance of the spatial U-statistic and C-A fractal modeling. Ore Geol Rev 113:103115. https://doi.org/10.1016/j.oregeorev.2019.103115

    Article  Google Scholar 

  • Goldberg S (2002) Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Sci Soc Am J 66:413–421

    Google Scholar 

  • Goldfarb RJ, Baker T, Dube B et al (2005) Distribution, character, and genesis of gold deposits in metamorphic terranes. Econ Geol 100th Anniv:407–450

  • Goldfarb RJ, Groves DI, Gardoll S (2001) Orogenic gold and geologic time: a global synthesis. Ore Geol Rev 18:1–72

    Google Scholar 

  • Grant NK (1969) The Late Precambrian to Early Paleozoic Pan-African orogeny in Ghana, Togo, Dahomey, and Nigeria. Geol Soc Am Bull 80:45–56

    Google Scholar 

  • Groves DI, Barley ME, Ho S (1989) Nature, genesis and tectonic setting of mesothermal gold mineralization in the Yilgarn Block, Western Australia. Econ Geol Monogr 6:71–85

    Google Scholar 

  • Groves DI, Goldfarb RJ, Gebre-Mariam M, Hagemann SG, Robert F (1998) Orogenic gold deposits : a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol Rev 13:7–27

    Google Scholar 

  • Grunsky EC (2010) The interpretation of geochemical survey data. Geochemistry Explor Environ Anal 10:27–74. https://doi.org/10.1144/1467-7873/09-210

    Article  Google Scholar 

  • Helba HA, Khalil KI, Mamdouh MM, Abdel Khalek IA (2019) Zonation in primary geochemical haloes for orogenic vein-type gold mineralization in the Quartz Ridge prospect, Sukari gold mine area. Eastern Desert of Egypt J Geochemical Explor 106378:106378. https://doi.org/10.1016/j.gexplo.2019.106378

    Article  Google Scholar 

  • Holt RW, Egbuniwe IG, Wright WR, Fitches JB (1978) The relationships between low-grade metasedimentary belts, calc-alkaline volcanism and the Pan-African orogeny in N.W. Nigeria. Geol Rundsch 67:631–646

    Google Scholar 

  • Kerrich R (1999) Nature’s gold factory. Nature 284:2101–2102

    Google Scholar 

  • Khalajmasoumi M, Sadeghi B, Carranza EJM, Sadeghi M (2016) Geochemical anomaly recognition of rare earth elements using multi-fractal modeling correlated with geological features. Central Iran J Geochemical Explor 181:318–332. https://doi.org/10.1016/j.gexplo.2016.12.011

    Article  Google Scholar 

  • Lapworth DJ, Knights KV, Key RM, Johnson CC, Ayoade E, Adekanmi MA, Arisekola TM, Okunlola OA, Backman B, Eklund M, Everett PA, Lister RT, Ridgway J, Watts MJ, Kemp SJ, Pitfield PEJ (2012) Geochemical mapping using stream sediments in west-central Nigeria: implications for environmental studies and mineral exploration in West Africa. Appl Geochem 27:1035–1052. https://doi.org/10.1016/j.apgeochem.2012.02.023

    Article  Google Scholar 

  • Levinson AA (1974) Introduction to exploration geochemistry. Applied Publishing Ltd, Calgary

    Google Scholar 

  • Loucks RR, Mavrogenes JA (1999) Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions. Nature 284:2159–2163

    Google Scholar 

  • Mackenzie DJ, Craw D (2007) Contrasting hydrothermal alteration mineralogy and geochemistry in the auriferous Rise & Shine Shear Zone, Otago, New Zealand. New Zeal J Geol Geophys 50:67–79. https://doi.org/10.1080/00288300709509822

    Article  Google Scholar 

  • Manya S (2017) Characterization of geochemical alteration halo associated with gold mineralization at the Buzwagi mine, northern Tanzania. J African Earth Sci 129:136–145. https://doi.org/10.1016/j.jafrearsci.2017.01.006

    Article  Google Scholar 

  • Muriithi FK (2016) Centered log-ratio (clr) transformation and robust principal component analysis of long-term NDVI data reveal vegetation activity linked to climate processes. https://doi.org/10.3390/cli3010135

  • Nigeria Geological Survey Agency. (2006). Geological Map of Nigeria. https://ngsa.gov.ng/geological-maps/.

  • Nouri R, Jafari MR, Arian M, Feizi F, Afzal P (2013) Correlation between cu mineralization and major faults using multifractal modelling in the Tarom area (NW Iran). Geol Carpathica 64:409–416. https://doi.org/10.2478/geoca-2013-0028

    Article  Google Scholar 

  • Omitogun AA, Caby R, Debat P, Mercier A (1990) Characteristics of Pan African metamorphism in the Igarra Schist Belt and the associated basement rocks (Nigeria). In: Procedings 15th Colloquim on African Geology 10–13 September. Nancy, France, pp 280–282

    Google Scholar 

  • Onyeagocha AC, Ekwueme BN (1990) Temperature - pressure distribution patterns in metamorphosed rocks of the Nigerian basement complex-a preliminary analysis. J African Earth Sci 11:83–93

    Google Scholar 

  • Parsa M, Maghsoudi A, Yousefi M, Sadeghi M (2016) Recognition of significant multi-element geochemical signatures of porphyry Cu deposits in Noghdouz area. NW Iran J Geochemical Explor 165:111–124. https://doi.org/10.1016/j.gexplo.2016.03.009

    Article  Google Scholar 

  • Pirajno F (2009) Hydrothermal processes and mineral systems. Springer Netherlands, Dordrecht

    Google Scholar 

  • R Development Core Team. (2008). R: A language and environment for statistical computing. Vienna. http://www.r-project.org.

  • Rahaman MA (1988) Recent advances in the study of the basement complex of Nigeria Precambrian Geology of Nigeria

    Google Scholar 

  • Rahaman MA, Ocan O (1978) On relationships in the Precambrian migmatitic gneisses of Nigeria. J Miner Geol 15:23–32

    Google Scholar 

  • Ramadan TM, Fattah MFA (2011) Characterization of gold mineralization in Garin Hawal area, Kebbi State, NW Nigeria, using remote sensing. Egypt J Remote Sens Sp Sci 13:153–163. https://doi.org/10.1016/j.ejrs.2009.08.001

    Article  Google Scholar 

  • Reimann C, de Caritat P (2017) Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. Sci Total Environ 578:633–648. https://doi.org/10.1016/j.scitotenv.2016.11.010

    Article  Google Scholar 

  • Reimann C, Filzmoser P, Garrett RG (2002) Factor analysis applied to regional geo- chemical data: problems and possibilities. Appl Geochem 17:185–206

    Google Scholar 

  • Reimann C, Filzmoser P, Garrett RG (2005) Background and threshold: a critical comparison of methods of determination. Sci Total Environ 346:1–16

    Google Scholar 

  • Reis AP, Sousa AJ, Fonseca EC (2001) Soil geochemical prospecting for gold at Marrancos (Northern Portugual), p 73

    Google Scholar 

  • Robb L (2005) Introduction to ore-forming processes. Blackwell Science Ltd, Oxford

    Google Scholar 

  • Rose AW, Hawkes HE, Webb J (1979a) Geochemistry in mineral exploration. Press, New York, Second. Acad

    Google Scholar 

  • Rose AW, Hawkes HE, Webb JS (1979b) Geochemistry in mineral exploration. Academic Press, London

    Google Scholar 

  • Sabbaghi H, Hassan S (2020) A combinative knowledge-driven integration method for integrating geophysical layers with geological and geochemical datasets. J Appl Geophys 172:103915. https://doi.org/10.1016/j.jappgeo.2019.103915

    Article  Google Scholar 

  • Sadeghi M, Billay A, Carranza EJM (2015) Analysis and mapping of soil geochemical anomalies: implications for bedrock mapping and gold exploration in Giyani area, South Africa. J Geochemical Explor 154:180–193. https://doi.org/10.1016/j.gexplo.2014.11.018

    Article  Google Scholar 

  • Safronov NI (1981) Concerning dispersion aureoles from mineral deposits and their use for prospecting and reconnaissance. In: Safronov NI (ed) Geochemical methods of prospecting for ore deposits part 1. Nedra Publishing, Leningrad, pp 169–193

    Google Scholar 

  • Simmonds V, Jahangiryar F, Moazzen M, Ravaghi A (2017) Distribution of base metals and the related elements in the stream-sediments around the Ahar area (NW Iran) and their implications. Chemie der Erde - Geochemistry 77:429–441. https://doi.org/10.1016/j.chemer.2017.07.006

    Article  Google Scholar 

  • Solovov AP (1987) Geochemical prospecting for mineral deposits. Mir Publishing, Moscow

    Google Scholar 

  • Spearman CE (1904) ‘“General intelligence”’ objectively determined and measured. Am J Psychol 15:201–293

    Google Scholar 

  • Sunkari ED, Appiah-Twum M, Lermi A (2019) Spatial distribution and trace element geochemistry of laterites in Kunche area: implication for gold exploration targets in NW, Ghana. J African Earth Sci 158:103519. https://doi.org/10.1016/j.jafrearsci.2019.103519

    Article  Google Scholar 

  • Teng Y, Ni S, Wang J, Zuo R, Yang J (2010) A geochemical survey of trace elements in agricultural and non-agricultural topsoil in Dexing area, China. J Geochemical Explor 104:118–127

    Google Scholar 

  • Tian M, Hao L, Zhao X et al (2018a) The study of stream sediment geochemical data processing by using k -means algorithm and centered Logratio transformation — an example of a district in Hunan , China 1. Geochem Int 56:1233–1244. https://doi.org/10.1134/S0016702918120066

    Article  Google Scholar 

  • Tian M, Wang X, Nie L, Liu H, Wang W, Yan T (2018b) Spatial distributions and the identification of ore-related anomalies of Cu across the boundary area of China and Mongolia. J Geochemical Explor 197:37–47. https://doi.org/10.1016/j.gexplo.2018.11.010

    Article  Google Scholar 

  • Tukey JW (1977) Exploratory data analysis. First, Pearson

    Google Scholar 

  • Turner DC (1983) Upper Proterozoic Schist Belts in the Nigerian sector of the Pan-African Province of West Africa. Precambrian Res 21:55–79

    Google Scholar 

  • Wang C, Carranza EJM, Liu X et al (2013) Characterization of primary geochemical haloes for gold exploration at the Huanxiangwa gold deposit, China. J Geochemical Explor 124:40–58

    Google Scholar 

  • Wang W, Cheng Q, Tang J, Pubuciren, Song Y, Li Y, Liu Z (2017) Fractal/multifractal analysis in support of mineral exploration in the Duolong mineral district, Tibet, China. Geochemistry Explor Environ Anal 17:261–276. https://doi.org/10.1144/geochem2016-449

    Article  Google Scholar 

  • Wright JB (1985) Geology and mineral resources of West Africa. George Allen & Unwin (Publishers) Ltd, 40 Museum Street, London WCIA lLU, UK George

  • Yousefi M, Carranza EJM (2016) Union score and fuzzy logic mineral prospectivity mapping using discretized and continuous spatial evidence values. J African Earth Sci 1–14. https://doi.org/10.1016/j.jafrearsci.2016.04.019

  • Zhao J, Chen S, Zuo R (2015) Identifying geochemical anomalies associated with Au – Cu mineralization using multifractal and artificial neural network models in the Ningqiang district, Shaanxi. China J Geochemical Explor 164:54–64. https://doi.org/10.1016/j.gexplo.2015.06.018

    Article  Google Scholar 

  • Zimmerman D, Pavlik C, Ruggles A, Armstrong MP (1999) An experimental comparison of ordinary and universal Kriging and inverse distance weighting. Math Geol 31:375–390

    Google Scholar 

  • Zuo R (2011) Identifying geochemical anomalies associated with Cu and Pb – Zn skarn mineralization using principal component analysis and spectrum – area fractal modeling in the Gangdese Belt, Tibet (China). J Geochemical Explor 111:13–22. https://doi.org/10.1016/j.gexplo.2011.06.012

    Article  Google Scholar 

  • Zuo R, Cheng Q, Agterberg FP, Xia Q (2009) Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China. J Geochemical Explor 101:225–235

    Google Scholar 

  • Zuo R, Wang J (2015) Fractal/multifractal modeling of geochemical data: a review. J Geochemical Explor. 164:33–41. https://doi.org/10.1016/j.gexplo.2015.04.010

    Article  Google Scholar 

  • Zuo R, Xia Q, Wang H (2013) Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization. Appl Geochem 28:202–211

    Google Scholar 

Download references

Acknowledgements

Our sincere appreciation goes to Mr. Lawali Abubakar (Federal University of Technology Birnin Kebbi), Mr. Sa’adu Salisu and Mr. Lukuman Abubakar for their assistance during field work. We also thank Emmanuel Daanoba Sunkari of Department of Geological Engineering, Faculty of Engineering, Niğde Ömer Halisdemir University, Niğde, Turkey, and Oluwaseun Olabode of School of Geosciences, University of Aberdeen, Scotland, for their useful suggestions. Our final appreciation goes to the anonymous reviewer whose constructive comments helped in improving the quality of the manuscript.

Code availability

Not applicable.

Funding

This research is funded by the African Union under the Pan African University Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Babatunde Joseph Fagbohun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Domenico M. Doronzo

Highlights

• Multivariate statistical analysis of trace element geochemical data was employed to identify pathfinder elements associated with gold mineralization.

• The multivariate analysis revealed Au-Ag-Bi-Pb as the multi-element association indicative of gold mineralisation.

• Median absolute deviation and multi-element halo technique were combined to elicit spatial pattern of uni- and multi-element geochemical anomalies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fagbohun, B.J., Bamisaiye, O.A., Ayoola, F.J. et al. Identifying geochemical anomalies and spatial distribution of gold and associated elements in the Zuru Schist Belt, northwest Nigeria. Arab J Geosci 14, 508 (2021). https://doi.org/10.1007/s12517-021-06828-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-06828-7

Keywords

Navigation