Skip to main content
Log in

Stability analysis of a super deep petroleum well drilled in strike-slip fault zones in the Tarim Basin, NW China

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The deeply buried petroleum reservoirs are usually associated with fault zones resulting from substantial tectonic activities. Thus, the issue of wellbore stability is particularly important since these natural fractures are quite abundant in fault zones. In this study, we focus on the wellbore stability of a deeply buried petroleum well located in the Tarim area of China. The well was drilled into an Ordovician limestone formation with a buried depth of 8000 m. Laboratory tests were conducted on rock samples to characterize the mineral compositions, micro-structures, and strength properties. Dual-porosity theories of poromechanics were employed to derive stress and pore pressure distributions in the limestone formation surrounding the wellbore. The risk of wellbore instability was analyzed accordingly. Our results show that stress distribution is susceptible to borehole azimuth. In addition, effective stresses in the rock matrix and fractures surrounding the borehole were derived and analyzed separately, where two failure criteria were applied to rock matrix and fracture, respectively. Given the in situ stress conditions, the importance of selecting the optimum well trajectory is highlighted. Time-dependent solutions were used to show the importance of including fracture strength in stability analysis of wellbores drilled in fractured porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

Download references

Acknowledgements

The authors would like to thank China Petroleum & Chemical Corporation for the support of this project. Financial support by Concordia University Seed start up grant (NO. VS1233) is acknowledged. Comments from three anonymous reviewers are very beneficial for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Zeynal Abiddin Erguler

Highlights

• Laboratory tests on rocks retrieved from super deep petroleum well were conducted.

• Dual-porosity theory was applied to analyze wellbore stability.

• The importance of considering fracture strength in borehole stability analysis was highlighted.

Appendices

Appendix A

The solution of \( {\sigma}_{\mathrm{r}\mathrm{r}}^{(1)}-{\sigma}_{\mathrm{r}\mathrm{r}}^{(2)}-{\sigma}_{\mathrm{r}\mathrm{r}}^{(3)},{\sigma}_{\uptheta \uptheta}^{(1)}-{\sigma}_{\uptheta \uptheta}^{(2)}-{\sigma}_{\uptheta \uptheta}^{(3)},{\sigma}_{\mathrm{r}\theta}^{(3)},{\mathrm{P}}^{\mathrm{I}(2)},{\mathrm{P}}^{\mathrm{I}(3)},{\mathrm{P}}^{\mathrm{I}\mathrm{I}(2)} \) and PII(3) in the Laplace domain are given as (Abousleiman and Nguyen 2005):

$$ {\overline{\sigma}}_{rr}^{(1)}=\left({\sigma}_m-{p}_w\right)\frac{R^2}{r^2}H(t) $$
(A-1)
$$ {\overline{\sigma}}_{\theta \theta}^{(1)}=-\left({\sigma}_m-{p}_w\right)\frac{R^2}{r^2}H(t) $$
(A-2)
$$ {\overline{\mathrm{P}}}^{\mathrm{I}(2)}=-\frac{1}{s}\left(\frac{p_0-{p}_w}{m^I-{m}^{II}}\right)\times \left\{\begin{array}{c}\left(1-{m}^{II}\right)\kern0.5em \Phi \left[{\xi}^{\mathrm{I}}\right]\\ {}\begin{array}{cc}-\left(1-{m}^I\right)& \Phi \left[{\xi}^{\mathrm{I}\mathrm{I}}\right]\end{array}\end{array}\right\} $$
(A-3)
$$ {\overline{\mathrm{P}}}^{\mathrm{I}\mathrm{I}(2)}=-\frac{1}{s}\left(\frac{p_0-{p}_w}{m^I-{m}^{II}}\right)\times \left\{\begin{array}{c}{m}^I\left(1-{m}^{II}\right)\kern0.5em \Phi \left[{\xi}^{\mathrm{I}}\right]\\ {}\begin{array}{cc}-{m}^{II}\left(1-{m}^I\right)& \Phi \left[{\xi}^{\mathrm{I}\mathrm{I}}\right]\end{array}\end{array}\right\} $$
(A-4)
$$ {\overline{\sigma}}_{rr}^{(2)}=-\frac{1\ }{s}\frac{2G}{K_v}\left(\frac{p_o-{p}_w}{m^I-{m}^{II}}\right)\times \left\{\begin{array}{c}{h}^I\left(1-{m}^{II}\right)\Lambda \left[{\xi}^{\mathrm{I}}\right]\\ {}-{h}^{II}\left(1-{m}^I\right)\Lambda \left[{\xi}^{\mathrm{I}\mathrm{I}}\right]\end{array}\right\} $$
(A-5)
$$ {\overline{\sigma}}_{\theta \theta}^{(2)}=\frac{1}{s}\frac{2G}{K_v}\left(\frac{p_o-{p}_w}{m^I-{m}^{II}}\right)\times \left\{\begin{array}{c}{h}^I\left(1-{m}^{II}\right)\left(\Phi \left[{\xi}^{\mathrm{I}}\right]+\Lambda \left[{\xi}^{\mathrm{I}}\right]\right)\\ {}-{h}^{II}\left(1-{m}^I\right)\left(\Phi \left[{\xi}^{\mathrm{I}\mathrm{I}}\right]+\Lambda \left[{\xi}^{\mathrm{I}\mathrm{I}}\right]\right)\end{array}\right\} $$
(A-6)
$$ {\overline{\mathrm{P}}}^{\mathrm{I}(3)}=\frac{\sigma_d}{2s}{K}_v\mathit{\cos}\left[2\left(\theta -{\theta}_r\right)\right]\times \left\{{C}_1{K}_2\left[{\upxi}^{\mathrm{I}}\mathrm{r}\right]-{C}_2{K}_2\left[{\upxi}^{\mathrm{I}\mathrm{I}}\mathrm{r}\right]+{f}^1{C}_3\frac{R^2}{r^2}\right\} $$
(A-7)
$$ {\displaystyle \begin{array}{c}{\overline{\mathrm{P}}}^{\mathrm{I}\mathrm{I}(3)}=\frac{\sigma_d}{2s}{K}_v\cos \left[2\left(\theta -{\theta}_r\right)\right]\\ {}\times \left\{{m}^I{C}_1{K}_2\left[{\upxi}^{\mathrm{I}}\mathrm{r}\right]-{m}^{II}{C}_2{K}_2\left[{\upxi}^{\mathrm{I}\mathrm{I}}\mathrm{r}\right]+{f}^{II}{C}_3\frac{R^2}{r^2}\right\}\end{array}} $$
(A-8)
$$ {\overline{\sigma}}_{rr}^{(3)}=\frac{\sigma_d}{s}\cos \left[2\left(\theta -{\theta}_r\right)\right]\times \left\{\begin{array}{c}G\left({h}^I{C}_1\Theta \left[{\upxi}^{\mathrm{I}}\right]-{h}^{II}{C}_2\Theta \left[{\upxi}^{\mathrm{I}\mathrm{I}}\right]\right)\\ {}-\left( Gh+{K}_v\right){C}_3\frac{R^2}{r^2}-3{C}_4\frac{R^4}{r^4}\end{array}\right\} $$
(A-9)
$$ {\overline{\sigma}}_{\theta \theta}^{(3)}=-\frac{\sigma_d}{s}\cos \left[2\left(\theta -{\theta}_r\right)\right]\times \left\{G\left({h}^I{C}_1\Omega \left[{\upxi}^{\mathrm{I}}\right]-{h}^{II}{C}_2\Omega \left[{\upxi}^{\mathrm{I}\mathrm{I}}\right]\right)-3{C}_4\frac{R^4}{r^4}\right\} $$
(A-10)
$$ {\overline{\sigma}}_{r\theta}^{(3)}=\frac{\sigma_d}{s}\sin \left[2\left(\theta -{\theta}_r\right)\right]\times \left\{\begin{array}{c}2G\left({h}^I{C}_1\uppsi \right)\left[{\upxi}^{\mathrm{I}}\right]-{h}^{II}{C}_2\uppsi \left[{\upxi}^{\mathrm{I}\mathrm{I}}\right]\\ {}-\frac{\left( Gh+{K}_v\right)}{2}{C}_3\frac{R^2}{r^2}-3{C}_4\frac{R^4}{r^4}\end{array}\right\} $$
(A-11)

Where s is the Laplace parameter, \( \left(\overline{\mathrm{P}}\right) \) denotes the Laplace transformation and Kn is the modified Bessel function of the second kind of nth order. For brevity, remaining expressions and coefficients are shown in

Appendix B

$$ \frac{1}{K}=\frac{1}{K^I}+\frac{1}{K^{II}} $$
(B-1)
$$ \frac{1}{G}=\frac{1}{G^I}+\frac{1}{G^{II}} $$
(B-2)
$$ {K}_v=K+\frac{4}{3}G $$
(B-3)
$$ {\beta}^{(N)}=\frac{\alpha^{(N)}{K}^{(N)}}{K}\ N=I, II $$
(B-4)
$$ \Phi \left[\xi \right]=\frac{K_0\left[\upxi \mathrm{r}\right]}{K_0\left[\upxi \mathrm{R}\right]} $$
(B-5)
$$ \Lambda \left[\xi \right]=\frac{K_1\left[\upxi \mathrm{r}\right]}{{\upxi \mathrm{r}K}_0\left[\upxi \mathrm{R}\right]}-\frac{RK_1\left[\upxi \mathrm{R}\right]}{{\xi r}^2{K}_0\left[\upxi \mathrm{R}\right]} $$
(B-6)
$$ \Theta \left[\upxi \right]=\frac{1}{\xi r}{K}_1\left[\upxi \mathrm{r}\right]+\frac{6}{{\left(\upxi \mathrm{r}\right)}^2}{K}_2\left[\upxi \mathrm{r}\right] $$
(B-7)
$$ \Omega \left[\upxi \right]=\frac{1}{\xi r}{K}_1\left[\upxi \mathrm{r}\right]+\left(1+\frac{6}{{\left(\upxi \mathrm{r}\right)}^2}\right){K}_2\left[\upxi \mathrm{r}\right] $$
(B-8)
$$ \uppsi \left[\upxi \right]=\frac{1}{\xi r}{K}_1\left[\upxi \mathrm{r}\right]+\frac{3}{{\left(\upxi \mathrm{r}\right)}^2}{K}_2\left[\upxi \mathrm{r}\right] $$
(B-9)

ξIand ξIIare two positive roots of the following characteristic equation

$$ \left({\upxi}^2-{M}_{11}\right)\left({\kappa}_r{\upxi}^2-{M}_{22}\right)-{M}_{12}{M}_{21}=0 $$
(B-10)

κr is mobility ratio which can be found by fluid mobility κ as

$$ {\kappa}_r=\frac{\kappa^{II}}{\kappa^I} and{\kappa}^{(N)}=\frac{k^{(N)}}{\mu^{(N)}},N=I, II $$
(B-11)

in which kI and kII are the permeability of matrix and fracture respectively.

M11, M12,M21 and M12, are lumped coefficients defined as

$$ {M}_{11}=\frac{s}{\kappa^I}\left(\frac{1}{M^I}+\frac{{\left({\beta}^I\right)}^2}{K_v}\right)+\frac{\Gamma}{\kappa^I} $$
(B-12)
$$ {M}_{12}={M}_{21}=\frac{s}{\kappa^I}\left(\frac{{\left({\beta}^I{\beta}^{II}\right)}^2}{K_v}\right)-\frac{\Gamma}{\kappa^I} $$
(B-13)
$$ {M}_{22}=\frac{s}{\kappa^I}\left(\frac{1}{M^{II}}+\frac{{\left({\beta}^{II}\right)}^2}{K_v}\right)+\frac{\Gamma}{\kappa^I} $$
(B-14)

in which the material coefficients can be founded by

$$ \frac{1}{{\mathrm{M}}^{\mathrm{I}}}=\left(\frac{\alpha^{\mathrm{I}}-{\phi}^{\mathrm{I}}}{{\mathrm{K}}_{\mathrm{s}}}+\frac{\phi^{\mathrm{I}}}{{\mathrm{K}}_{\mathrm{f}}}\right) $$
(B-15)
$$ \frac{1}{{\mathrm{M}}^{\mathrm{II}}}=\left(\frac{\alpha^{\mathrm{II}}-{\phi}^{\mathrm{II}}}{{\mathrm{K}}_{\mathrm{s}}}+\frac{\phi^{\mathrm{II}}}{{\mathrm{K}}_{\mathrm{f}}}\right) $$
(B-16)
$$ {h}^{(N)}={\beta}^I+{\beta}^{II}{m}^{(N)},N=I, II $$
(B-17)
$$ h={\beta}^I{f}^I+{\beta}^{II}{f}^{II}-1 $$
(B-18)
$$ {m}^{(N)}=\frac{\left[{\left({\upxi}^{(N)}\right)}^2-{M}_{11}\right]}{M_{12}},N=I, II $$
(B-19)
$$ \left\{\begin{array}{c}{f}^I\\ {}{f}^{II}\end{array}\right\}=\frac{s}{\kappa^I{K}_v}{\left[\begin{array}{c}{M}_{11}\kern0.5em {M}_{12}\\ {}\begin{array}{cc}{M}_{21}& {M}_{22}\end{array}\end{array}\right]}^{-1}\left\{\begin{array}{c}{\beta}^I\\ {}{\beta}^{II}\end{array}\right\} $$
(B-20)
$$ {C}_1=4{\upxi}^{\mathrm{I}}\mathrm{R}\frac{D_2}{D_4},\kern0.5em {C}_2=4{\upxi}^{\mathrm{I}\mathrm{I}}\mathrm{R}\frac{D_1}{D_4},\kern0.5em {C}_3=4\frac{D_3}{D_4} $$
(B-21)
$$ {C}_4=\frac{1}{D_4}\left[\begin{array}{c}2{Gh}^{II}{D}_1\left({K}_1\left[{\upxi}^{\mathrm{I}\mathrm{I}}R\right]+\frac{4}{\upxi^{\mathrm{I}\mathrm{I}}R}{K}_2\left[{\upxi}^{\mathrm{I}\mathrm{I}}R\right]\right)\\ {}-2{Gh}^I{D}_2\left({K}_1\left[{\upxi}^{\mathrm{I}}R\right]+\frac{4}{\upxi^{\mathrm{I}}R}{K}_2\left[{\upxi}^{\mathrm{I}}R\right]\right)-\left( Gh+{K}_v\right){D}_3\end{array}\right] $$
(B-22)

where

$$ {D}_1={\upxi}^{\mathrm{I}}\left({f}^{II}-{f}^I{m}^I\right){K}_2\left[{\upxi}^{\mathrm{I}}R\right] $$
(B-23)
$$ {D}_2={\upxi}^{\mathrm{II}}\left({f}^{II}-{f}^I{m}^{II}\right){K}_2\left[{\upxi}^{\mathrm{II}}R\right] $$
(B-24)
$$ {D}_3={\upxi}^{\mathrm{I}}{\upxi}^{\mathrm{I}\mathrm{I}}\mathrm{R}\left({m}^I-{m}^{II}\right){K}_2\left[{\upxi}^{\mathrm{I}}R\right]{K}_2\left[{\upxi}^{\mathrm{I}\mathrm{I}}R\right] $$
(B-25)
$$ {D}_4=2\mathrm{G}\left({h}^{II}{D}_1{\mathrm{K}}_1\left[{\upxi}^{\mathrm{I}\mathrm{I}}R\right]-{h}^I{D}_2{\mathrm{K}}_1\left[{\upxi}^{\mathrm{I}}R\right]\right)+\left( Gh+{K}_v\right){D}_3 $$
(B-26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, S., Li, B., Zsaki, A.M. et al. Stability analysis of a super deep petroleum well drilled in strike-slip fault zones in the Tarim Basin, NW China. Arab J Geosci 14, 675 (2021). https://doi.org/10.1007/s12517-021-06709-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-06709-z

Keywords

Navigation