Skip to main content

Advertisement

Log in

Incorporation of siliceous sand and lignite tailings from Miocene deposits (Zeramdine, Eastern Tunisia) in clay bricks and ceramic tiles: technological feasibility

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Miocene green clay from Zeramdine areas, of various physico-chemical, colour, and firing properties, have been widely used as raw materials in the fabrication of diverse building ceramic products. However, these clay resources are rapidly consumed which in turn affects the local industrial productivity. Up to now, only green clays are extracted and used in the ceramic industry the lignite and siliceous sand from the Miocene deposits being considered as waste; this research aims to present a new alternative for quarry wastes in the red clay ceramic industry. With the objective of reducing the amount of the clay used in ceramic industries in order to preserve the clay resources from the Zeramdine district and to minimize the negative impacts on environment, different mixings of clay, lignite, and siliceous sand were tested. The mixture M2 made by 87% of clays, 10% of siliceous sand, and 3% of lignite gave the best geotechnical properties (i.e. firing temperature at 1150 °C firing shrinkage 3.28% weight loss 10.07%, water absorption: 5.94%, and bulk density: 1.99gcm−3 flexural strength 34.57 MPa. The other physical properties fit with the Tunisian NT 21-287 (2004) and European EN 777-1 (2003) Standards. Their technological properties are especially consistent with the production of rustic tiles, red stoneware, and fast-fired red wall tiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abajo, M.F., 2000. Manual sobre fabricación de baldosas, tejas y ladrillos. Ed. Beralmar S.A.,(Barcelona)

  • Abbès, A., 1983, Etude géologique et géophysique du Miocène de la Dakhla (Cap Bon, Tunisie Nord-orientale). Application à la prospection des couches lignitifères: Thèse de Troisième Cycle, Université des Sciences et Techniques de Sfax, Tunisie, 199 p

  • Abdelmalek B, Bouazi R, Bouftouha Y, Bouabsa L, Fagel N (2017) Mineralogical characterization of Neogene clay areas from the Jijel basin for ceramic purposes (NE Algeria -Africa). Appl Clay Sci 136:176–183. https://doi.org/10.1016/j.clay.2016.11.025

    Article  Google Scholar 

  • Abdrakhimov VZ, Abdrakhimova ES (2014) Environmental and practical aspects of using slag from burning coal in the production of ceramic materials based on inter-shale clay. Ugol 4:41–43

    Google Scholar 

  • Aras A (2004) The change of phase composition in kaolinite and illite rich clay based ceramic bodies. Appl Clay Sci 24:257–269. https://doi.org/10.1016/j.clay.2003.08.012

    Article  Google Scholar 

  • Baccour H, Medhioub M, Jamoussi F, Mhiri T, Daoud A (2008) Mineralogical evaluation and industrial applications of the Triassic clay deposits, Southern Tunisia. Mater Charact 59:1613–1622. https://doi.org/10.1016/j.matchar.2008.02.008

    Article  Google Scholar 

  • Baioumy HM, Ismael IS (2014) Composition, origin and industrial suitability of the Aswan ball clays, Egypt. Appl Clay Sci 102:202–212. https://doi.org/10.1016/j.clay.2014.09.041

    Article  Google Scholar 

  • Baran B, Ertürk T, Sarıkaya Y, Alemdaroğlu T (2001) Workability test method for metals applied to examine a workability measure (plastic limit) for clays. Appl Clay Sci 20 (1-2):53–63

  • Beaulieu, J., 1979. Identification géotechnique des matériaux argileux naturels par la mesure de leur surface spécifique au moyen de bleu de méthylène. Thèse de troisième cycle. Univ. Orsay (133 pp.)

  • Bédir M, Tlig S, Bobier C, Zargouni F, Aïssaoui N (1996) Sequence stratigraphy, basin dynamics and petroleum geology of Miocene from the eastern Tunisia. American Association of Petroleum Geologist Bulletin 80(1):63–81. https://doi.org/10.1306/64ED8746-1724-11D7-8645000102C1865D

    Article  Google Scholar 

  • Bennour A, Mahmoudi S, Srasra E, Boussen S, Htira N (2015a) Composition, firing behavior and ceramic properties of the Sejnène clays (Northwest Tunisia). Appl Clay Sci 115:30–38. https://doi.org/10.1016/j.clay.2015.07.025

    Article  Google Scholar 

  • Bennour A, Mahmoudi S, Srasra E, Hatira N, Boussen S, Ouaja M, Zargouni F (2015b) Identification and traditional ceramic application of clays from the Chouamekh region in South-Eastern Tunisia. Appl Clay Sci 118:212–220. https://doi.org/10.1016/j.clay.2015.09.018

    Article  Google Scholar 

  • Bergaya F, Theng BKG, Lagaly G (2006) Developments in clay science. Handbook of clay science 1. Elsevier, Amsterdam (1248 pp.)

    Google Scholar 

  • Boulingui JE, Nkoumbou C, Njoya D, Thomas F, Yvon J (2015) Characterization of clays from Mezafe and Mengono (Ne-Libreville, Gabon) for potential uses in fired products. Appl Clay Sci 115:132–144. https://doi.org/10.1016/j.clay.2015.07.029

    Article  Google Scholar 

  • Boussen S, Sghaier D, Chaabani F, Jamoussi B, Bennour A (2016) Characteristics and industrial application of the Lower Cretaceous clay deposits (Bouhedma Formation), Southeast Tunisia: potential use for the manufacturing of ceramic tiles and bricks. Appl. Clay Sci 123:210–221. https://doi.org/10.1016/j.clay.2016.01

    Article  Google Scholar 

  • Carretero MI, Dondi M, Fabbri B, Raimondo M (2002) The influence of shaping and firing technology on ceramic properties of calcareous and non-calcareous illitic-chloritic clays. Appl Clay Sci 20:301–306. https://doi.org/10.1016/S0169-1317(01)00076-X

    Article  Google Scholar 

  • Casagrande, A., 1947. Plasticity chart for the classification of cohesive soils. Trans Am Soc Civ Eng 783–811

  • Celik H (2010) Technological characterization and industrial application of two Turkish clays for the ceramic industry. App Clay Sci 50:245–254. https://doi.org/10.1016/j.clay.2010.08.005

    Article  Google Scholar 

  • Choi YW, Kim YJ, Choi O, Lee KM, Lachemi M (2009) Utilization of tailings from tungsten mine waste as a substitution material for cement. Constr Build Mater 23(7):2481–2486. https://doi.org/10.1016/j.conbuildmat.2009.02.006

    Article  Google Scholar 

  • Cicek T, Tanrıverdi M (2007) Lime based steam autoclaved fly ash bricks. Construction and Building Materials 21(6):1295–1300. https://doi.org/10.1016/j.conbuildmat.2006.01.005

    Article  Google Scholar 

  • Clark G, Leach BF, O' Conner, S. (eds) (2008) Islands of inquiry: colonization, seafaring and the archeology of maritime landscape papers in honor of Atholl Anderson. Australian National University Press, Terra Australia, pp 435–452

    Google Scholar 

  • Diko ML, Ekosse GE, Ayonghe SN, Ntasin EB (2011) Physical characterization of clayey materials from tertiary volcanic cones in Limbe (Cameroon) for ceramic applications. Appl Clay Sci 51(3):380–384

    Article  Google Scholar 

  • Dondi M (1999) Clay materials for ceramic tiles from the Sassuolo District (northern Apennines, Italy). Geology, composition and technological properties. Appl. Clay Sci 15:337–366

    Article  Google Scholar 

  • Dondi M, Raimondo M, Zanelli C (2014) Clays and bodies for ceramic tiles: reappraisal and technological classification. Appl Clay Sci 96:91–109. https://doi.org/10.1016/j.clay.2014.01.013

    Article  Google Scholar 

  • El Ouahabi M, Daoudi L, Fagel N (2014) Mineralogical and geotechnical characterization of clays from northern Morocco for their potential use in the ceramic industry. Clay Miner 49:35–51. https://doi.org/10.1180/claymin.2014.049.1.04

    Article  Google Scholar 

  • El-Mahllawy MS (2008) Characteristics of acid resisting bricks made from quarry residues and waste steel slag. Constr Build Mater 22(8):1887–1896. https://doi.org/10.1016/j.conbuildmat.2007.04.007

    Article  Google Scholar 

  • Fadil-Djenabou S, Ndjigui P-D, Mbey JA (2015) Mineralogical and physicochemical characterization of Ngaye alluvial clays (Northern Cameroon) and assessment of its suitability in ceramic production. J. Asian Ceram. So 3:50–58. https://doi.org/10.1016/j.jascer.2014.10.008

    Article  Google Scholar 

  • Fang HY (1997) Introduction to environmental geotechnology. CRC Press LLC, America, p 105

    Google Scholar 

  • Ferrari S, Gualtieri AF (2006) The use of illitic clays in the production of stoneware tile ceramics. Appl Clay Sci 32:73–81. https://doi.org/10.1016/j.clay.2005.10.001

    Article  Google Scholar 

  • German RM (1985) Liquid phase sintering. Plenum, New York

    Book  Google Scholar 

  • González I, Romero-Baena A, Galán E, Miras A, Castilla-Alcántara JC, Campos P (2018) Ceramic materials from Cuatrovitas archaelogical site (Spain). A mineralogical and chemical study for determining the provenance and the firing temperature. Appl Clay Sci 166:38–48. https://doi.org/10.1016/j.clay.2018.09.003

    Article  Google Scholar 

  • Gonzalez-Garcia F, Romero-Acosta V, Garcia-Ramos G, Gonzalez-Rodriguez M (1990) Firing transformation of mixtures of clays containing illite, kaolinite and calcium carbonate used by ornamental tile industries. Appl Clay Sci 5:361–375. https://doi.org/10.1016/0169-1317(90)90031-J

    Article  Google Scholar 

  • Görhan G, Şimşek O (2013) Porous clay bricks manufactured with rice husks. Construction and Building Materials 40:390–396. https://doi.org/10.1016/j.conbuildmat.2012.09.110

    Article  Google Scholar 

  • Gualtieri A, Bertolani M (1992) Mullite and cristobalite formation in fired products starting from halloysitic clay. Appl. Clay Science 7(4):251–262. https://doi.org/10.1016/0169-1317(92)90013-d

    Article  Google Scholar 

  • Hachani M, Hajjaji W, Moussi B, Medhioub M, Rocha F, Labrincha JA, Jamoussi F (2012) Production of ceramic bodies from Tunisian Cretaceous clays. Clay Miner 47:59–68

    Article  Google Scholar 

  • Hajjaji M, Mezouari H (2011) A calcareous clay from Tamesloht (Al Haouz, Morocco): properties and thermal transformations. Appl Clay Science 51(4):507–510. https://doi.org/10.1016/j.clay.2011.01.018

    Article  Google Scholar 

  • Hajjaji W, Moussi B, Hachani M, Medhioub M, Lopez-Galindo A, Rocha F, Labrincha JA, Holtz RD, Kovacs WD (1981) An introduction to geotechnical engineering. Prentice-Hall, Inc., New Jersey

    Google Scholar 

  • Holtz RD, Kovacs WD, Sheahan TC (1981) An introduction to geotechnical engineering, vol 733. Prentice-Hall, Englewood Cliffs

  • Hradil D, Hradilová J, Holcová K, Bezdičk P (2018) The use of pottery clay for canvas priming in Italian Baroque-an example of technology transfer. Appl Clay Sci 165:135–147. https://doi.org/10.1016/j.clay.2018.08.011

    Article  Google Scholar 

  • ISO 10545-3,1995. Ceramic tiles (part 3): determination of water absorption, apparent porosity, apparent relative density and bulk density. Edition 1

  • ISO 10545-4, 2004. Ceramic tiles (part 4): determination of modulus of rupture and breaking strength. Edition 2

  • ISO 13006, 1998. Ceramic tiles. Definitions, classification, characteristics and marking. Edition 1

  • Jeridi K, Hachani M, Hajjaji W, Moussi B, Medhioub M, Lòpez-Galindo A, Kooli F, Zargouni F, Labrincha J, Jamoussi F (2008) Technological behaviour of some Tunisian clays prepared by dry ceramic processing. Clay Miner 43:339–350

    Article  Google Scholar 

  • Jordan MM, Montero MA, Meseguer S, Sanfeliu T (2008) Influence of firing temperature and mineralogical composition on bending strength and porosity of ceramic tile bodies. Appl Clay Sci 42(1–2):266–271. https://doi.org/10.1016/j.clay.2008.01.005

    Article  Google Scholar 

  • Jouenne CA (1990) Treatise on ceramics and mineral materials. Editions Septima, Paris 657 p

    Google Scholar 

  • Kara A, Stevens R (2002) Characterisation of biscuit fired bone china body microstructure. Part I: XRD and SEM of crystalline phases. J Eur Ceram Soc 22(5):731–736

  • Kreimeyer R (1987) Some notes on firing colour of clay bricks. Appl Clay Sci 2(2):175–183. https://doi.org/10.1016/0169-1317(87)90007-X

    Article  Google Scholar 

  • Krokida, M.K.; Maroulis, Z.B. Effect of drying method on shrinkage and porosity. https://doi.org/10.1080/07373939708917369, 1997

  • L. C. P. C., 1987. Limites d’Atterberg, limite de liquidité, limite de plasticité, method d’essai LPC, n°19. publication L. C. P. C., p. 26

  • Lahcen D, Elboudour EIH, Saadi L, Albizane A, Bennazha J, Waqif M, Elouahabi M, Fagel N (2014) Characteristics and ceramic properties of clayey materials from Amezmiz region (Western High Atlas, Morocco). Appl Clay Sci 102:139–147. https://doi.org/10.1016/j.clay.2014.09.029

    Article  Google Scholar 

  • Litvan G (1984) Determination of the firing temperature of clay brick. Am Ceram Soc Bull 63:617–627

    Google Scholar 

  • Lu N, ASCE F, Dong Y, ASCE AM (2017) Correlation between soil-shrinkage curve and water-retention characteristics. J Geotech Geoenviron 143:04017054. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001741

    Article  Google Scholar 

  • Mahmoudi S, Bennour A, Meguebli A, Srasra E, Zargouni F (2016) Characterization and traditional ceramic application of clays from the Douiret region in South Tunisia. Appl Clay Sci 127(128):78–87. https://doi.org/10.1016/j.clay.2016.04.010

    Article  Google Scholar 

  • Mahmoudi S, Bennour A, Srasra E, Zargouni F (2017) Characterization, firing behaviour and ceramic application of clays from the Gabes region in South Tunisia. Appl Clay Sci 135:215–225. https://doi.org/10.1016/j.clay.2016.09.023

    Article  Google Scholar 

  • Maniatis Y, Tite MS (1981) Technological examination of Neolithic–Bronze Age pottery from Central and Southeast Europe and from the Near East. J Archaeol Sci 8:59–76. https://doi.org/10.1016/0305-4403(81)90012-1

    Article  Google Scholar 

  • Marsigli M, Dondi M, Fabbri B (1997) Recycling of urban and industrial wastes in brick production: a review. Tile and Brick Int 13:218–225 and 302–315

    Google Scholar 

  • Meseguer S, Pardo F, Jordon MM, Sanfeliu T, Gonzalez I (2010) Ceramic behaviour of five Chilean clays which can be used in the manufacture of ceramic tile bodies. Appl Clay Sci 47:372–377. https://doi.org/10.1016/j.clay.2009.11.056

    Article  Google Scholar 

  • Milheiro FAC, Freire MN, Silva AGP, Holanda JNF (2005) Densification behaviour of a red firing Brazilian kaolinitic clay. Ceram Int 31:757–763. https://doi.org/10.1016/j.ceramint.2004.08.010

    Article  Google Scholar 

  • Monteiro SN, Vieira CMF (2004) Influence of firing temperature on the ceramic properties of clays from Campos dos Goytacazes. Braz Appl Clay Sci 27:229–234. https://doi.org/10.1016/j.clay.2004.03.002

    Article  Google Scholar 

  • Moore DM, Reynolds RC (1989) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press pp 322

  • Moreno-Maroto JM, Alonso-Azcárate J (2018) What is clay? A new definition of “clay” based on plasticity and its impact on the most widespread soil classification systems. Appl Clay Sci 161:57–63. https://doi.org/10.1016/j.clay.2018.04.011

    Article  Google Scholar 

  • Moussi B, Medhioub M, Hatira N, Yans J, Hajjaji W, Rocha F, Jamoussi F (2011) Identification and use of white clayey deposits from the area of Tamra (northern Tunisia) as ceramic raw materials. Clay Minerals 46(01):165–175. https://doi.org/10.1180/claymin.2011.046.1.165

    Article  Google Scholar 

  • Ngun BK, Mohamad H, Sulaiman SK, Okada K, Ahmad ZA (2011) Some ceramic properties of clays from Central Cambodia. Appl Clay Sci 53:33–41. https://doi.org/10.1016/j.clay.2011.04.017

    Article  Google Scholar 

  • Nzeugang Nzeukou A, Fagel N, Njoya A, Beyala Kamgang V, Eko Medjo R, Chinje Melo U (2013) Mineralogy and physico-chemical properties of alluvial clays from Sanaga valley (Center, Cameroon): suitability for ceramic application. Appl Clay Sci 83(84):238–243. https://doi.org/10.1016/j.clay.2013.08.038

    Article  Google Scholar 

  • Pardo F, Jordan MM, Montero MA (2018) Ceramic behaviour of clays in Central Chile. Appl Clay Sci 157:158–164. https://doi.org/10.1016/j.clay.2018.02.044

    Article  Google Scholar 

  • Parras J, Sanchez-Jimenez C, Rodas M, Luque FG (1996) Ceramic application of Middle Ordovician shales from Central Spain. Appl Clay Sci 11:25–41. https://doi.org/10.1016/0169-1317(96)00003-8

    Article  Google Scholar 

  • Rajput RK (2004) Engineering materials. S. Chand and Company Ltd, New Delhi, pp 36–70

    Google Scholar 

  • Ratzemberger H (1990) An accelerated method for the determination of drying sensitivity. Ziegelind Int 43:348–354

    Google Scholar 

  • Sadik C, Albizane A, El Amrani IE (2014) Composition and ceramic characteristics of cretaceous clays from Morocco. Advances in Science and Technology 92:209–214. https://doi.org/10.4028/www.scientific.net/ast.92.209

    Article  Google Scholar 

  • Sanchez Soto PJ, Dıaz-Hernandez JL, Raigon-Pichardo M, Ruız-Conde A, Garcıa Ramos G (1994) Ceramic properties of a Spanish clay containing illite, chlorite and quartz. Br Ceram Trans 93:196–201

    Google Scholar 

  • Santos PS (1997) Ciência e Tenologia de Argilas, vol. 1, 3rd edn. Edgard Blqcher Ltda, S. Paulo in Portuguese

    Google Scholar 

  • Semiz B (2017) Characteristics of clay-rich raw materials for ceramic applications in Denizli region (Western Anatolia). Appl Clay Sci 137:83–93. https://doi.org/10.1016/j.clay.2016.12.014

    Article  Google Scholar 

  • Shih P-H, Wu Z-Z, Chiang H-L (2004) Characteristics of bricks made from waste steel slag. Waste management 24(10):1043–1047. https://doi.org/10.1016/j.wasman.2004.08.006

    Article  Google Scholar 

  • Tar G, Ferreira JMF, Fonseca AT (1999) Influence of particle size and particle size distribution ondrying-shrinkage behaviour of alumina slip cast bodies. Ceram Int 25:577–580. https://doi.org/10.1016/S0272-8842(98)00068-6

    Article  Google Scholar 

  • Tayech B (1984) Etudes palynologiques dans le Néogène du Cap- Bon (Tunisie): Thèse de Troisième Cycle. Université Claude Bernard, Lyon 121 pe

    Google Scholar 

  • Tran NL (1977) Un nouvel essai d'identification des sols: l’essai au bleu de méthylène. Bulletin de Liaison des Laboratoires des Ponts et Chaussées 88:136–137. https://doi.org/10.1139/t84-055

    Article  Google Scholar 

  • Tsozué D, Nzeukou Nzeugang A, Mache JR, Loweh S, Fagel N (2017) Mineralogical, physico-chemical and technological characterization of clays from Maroua (Far-North, Cameroon) for use in ceramic bricks production. J Build Eng 11:17–24. https://doi.org/10.1016/j.jobe.2017.03.008

    Article  Google Scholar 

  • Tudisca V, Casieri C, Demma F, Diaz M, Piñol L, Terenzi C, De Luca F (2011) Firing technique characterization of black-slipped pottery in Praeneste by low field 2D NMR relaxometry. J Archaeol Sci 38(2):352–359

    Article  Google Scholar 

  • Velde B., 1992. Introduction to clay minerals, Chapman and Hall, 198 pp.

  • Viania A, Cultrone G, Sotiriadis K, Ševčík R, Šašek P (2018) The use of mineralogical indicators for the assessment of firing temperature in fired-clay bodies. Appl Clay Sci 163:108–118. https://doi.org/10.1016/j.clay.2018.07.020

    Article  Google Scholar 

  • Vieira CMF, Sánchez R, Monteiro SN (2008) Characteristics of clays and properties of building ceramics in the state of Rio de Janeiro, Brazil. Constr Build Mater 22(5):781–787. https://doi.org/10.1016/j.conbuildmat.2007.01.006

    Article  Google Scholar 

  • Wagner, U., Gebhard, R., Murad, E., Riederer, R., Shimada, I., Wagner, F.E., 1992. Kiln firing at Batan Grande: today and in formative time. Archaeometry of PreColumbian Sites and Artifacts, Proceedings of a Symposium Organized by the UCLA Institute of Archaeology and the Getty Conservation Institute, Los Angeles, California, p. 67. March 23-27

  • Wansard G (1990) Effets de la temperature sur la composition mineralogique et sur la structure de la brique de Wanlin (Belgique). Bull Soc B Geol 99:207–219

    Google Scholar 

  • Yaya A, Tiburu EK, Vickers ME, Efavi JK, Onwona-Agyemana B, Knowles KM (2017) Characterisation and identification of local kaolin clay from Ghana: a potential material for electroporcelain insulator fabrication. Appl Clay Sci 150:125–130. https://doi.org/10.1016/j.clay.2017.09.015

    Article  Google Scholar 

  • Youngue-Fouateu R, Ndimukong F, Njoya A, Kunyukubundo F, Mbih KP (2016) The Ndop plain clayey materials (Bamenda area-NW Cameroon): mineralogical, geochemical, physical characteristics and their fired products. J Asian Ceram Soc 4:299–308. https://doi.org/10.1016/j.jascer.2016.05.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maalla Imen.

Additional information

Responsible Editor: Domenico M. Doronzo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imen, M., Slim, B., Nathalie, F. et al. Incorporation of siliceous sand and lignite tailings from Miocene deposits (Zeramdine, Eastern Tunisia) in clay bricks and ceramic tiles: technological feasibility. Arab J Geosci 14, 282 (2021). https://doi.org/10.1007/s12517-021-06582-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-06582-w

Keywords

Navigation