Skip to main content

Advertisement

Log in

Separation of au, Ag, As, Cd, Cu, Hg, Mo and Sb geochemical anomalies using the concentration-number (C-N) fractal and classical statistical models in Nahavand 1: 100,000 sheet, Iran

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The main aim of this research is finding the most promising concentration areas of the Au and their paragenesis in order to prospect the most accurate anomalies in Nahavand 1:100,000 sheet. Based on the generated models, the results of the C-N model are more accurate than the conventional ones although they have good correlations with each other. The anomalies are correlated with faults and structure trending NW-SE, which correlate with main structural trends in Sanandaj-Sirjan Zone. Gold mineralization was very well reflected by the geochemical signature of these elements in the sediment samples of the area. The results derived via C-N fractal model exhibit Au anomalies in the northwest, west and southeast parts of the area. The use of a multivariate statistical method such as the factor analysis greatly helped the interpretation of the data set in this study. The application of this technique gave rise to a significant conception of the geochemistry of the stream sediments in the study area. Based on correlation between obtained results with geological data, the major anomalies of Au and related factors are mostly situated around slates and metavolcanic rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Afzal P, Ahari HD, Omran NR, Aliyari F (2013) Delineation of gold mineralized zones using concentration–volume fractal model in Qolqoleh gold deposit. NW Iran, Ore Geology Reviews 55:125–133

    Article  Google Scholar 

  • Afzal P, Fadakar Alghalandis Y, Khakzad A, Moarefvand P, RashidnejadOmran N (2011) Delineation of mineralization zones in porphyry cu deposits by fractal concentration–volume modeling. J Geochem Explor 108:220–232

    Article  Google Scholar 

  • Afzal P, Zia Zarifi A, Yasrebi AB (2012) Identification of uranium targets based on airborne radiometric data analysis by using multifractal modeling, Tark and Avanligh 1:50 000 sheets. NW Iran, Nonlinear Processes Geophys 19:283–289

    Article  Google Scholar 

  • Agterberg FP (1995) Multifractal modeling of the sizes and grades of giant and supergiant deposits. Int Geol Rev 37:1–8

    Article  Google Scholar 

  • Bolviken B, Stokke PR, Feder J, Jossang T (1992) The fractal nature of geochemical landscapes. J Geochem Explor 43:91–109

    Article  Google Scholar 

  • Carranza EJM (2008) Geochemical anomaly and mineral Prospectivity mapping in GIS. Handbook of exploration and environmental geochemistry, vol 11. Elsevier, Amsterdam, 351 pp

    Google Scholar 

  • Carranza EJM (2009) Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geol Rev 35:383–400

    Article  Google Scholar 

  • Carranza EJM (2010) From predictive mapping of mineral prospectivity to quantitative estimation of number of undiscovered prospects. Resour Geol 61:30–51

    Article  Google Scholar 

  • Carranza EJM, Owusu EA, Hale M (2009) Mapping of prospectivity and estimation of number of undiscovered for lode gold, southwestern Ashanti Belt. Ghana, Mineralium Deposita 44:915–938

    Article  Google Scholar 

  • Carranza EJM, Sadeghi B (2010) Predictive mapping of prospectivity and quantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden). Ore Geol Rev 38:219–241

    Article  Google Scholar 

  • Cheng Q (1999) Spatial and scaling modelling for geochemical anomaly separation. J Geochem Explor 65:175–194

    Article  Google Scholar 

  • Cheng Q (2007) Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu. Yunnan Province, China, Ore Geology Reviews 32:314–324

    Article  Google Scholar 

  • Cheng Q, Agterberg FP, Ballantyne SB (1994) The separation of geochemical anomalies from background by fractal methods. J Geochem Explor 51:109–130

    Article  Google Scholar 

  • Cheng Q, Bonham-Carter G, Wang W, Zhang S, Li W, Qinglin X (2011) A spatially weighted principal component analysis for multi-element geochemical data for mapping locations of felsic intrusions in the Gejiu mineral district of Yunnan, China. Comput Geosci 37(5):662–669

    Article  Google Scholar 

  • Cox DP, Singer DA (1986) Mineral deposit models vol 1693. US Government Printing Office Bulletin

    Google Scholar 

  • Daneshvar Saein L, Rasa I, Rashidnejad Omran N, Moarefvand P, Afzal P, Sadeghi B (2012) Application of number-size (N-S) fractal model to quantify of the vertical distributions of Cu- Mo in Nowchun porphyry deposit (Kerman, SE Iran). Arch Min Sci 58(1):89–105

  • Deng J, Wang Q, Yang L, Wang Y, Gong Q, Liu H (2010) Delineation and explanation of geochemical anomalies using fractal models in the Heqing area. Yunnan Province, China. J Geochem Explor 105:95–105

  • Farahmandfar Z, Jafari M, Afzal P, Ashja Ardalan A (2020) Description of gold and copper anomalies using fractal and stepwise factor analysis according to stream sediments in NW Iran. Geopersia 10:135–148. mnbhttps://doi.org/10.22059/geope.2019.265535.648413

  • Ghezelbash R, Maghsoudi A, Daviran M (2019b) Prospectivity modeling of porphyry copper deposits: recognition of efficient mono-and multi-element geochemical signatures in the Varzaghan district, NW Iran. Acta Geochim 38(1):131–144

    Article  Google Scholar 

  • Goncalves MA, Mateus A, Oliveira V (2001) Geochemical anomaly separation by multifractal modeling. J Geochem Explor 72:91–114

    Article  Google Scholar 

  • Hassanpour S, Afzal P (2013) Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system. NW Iran. Arab J Geosci 6:957–970. https://doi.org/10.1007/s12517-011-0396-2

  • Heidari SM, Ghaderi M, Afzal P (2013) Delineating mineralized phases based on lithogeochemical data using multifractal model in Touzlar epithermal au-Ag (cu) deposit, NW Iran. Appl Geochemistry 31:119–132

    Article  Google Scholar 

  • Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of Proterozoic iron oxide (cu–U–au–REE) deposits. Precambrian Res 58(1–4):241–287

    Article  Google Scholar 

  • Hosseini SA, Afzal P, Sadeghi B, Sharmad T, Shahrokhi SV, Farhadinejad T (2015) Prospection of au mineralization based on stream sediments and lithogeochemical data using multifractal modeling in Alut 1: 100,000 sheet, NW Iran. Arab J Geosci 8(6):3867–3879

    Article  Google Scholar 

  • Jolliffe IT (2002) Principal component analysis. Springer series in statistics, 2 edn. Springer-Verlag New York. https://doi.org/10.1007/b98835

  • Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20(1):141–151

    Article  Google Scholar 

  • Kouhestani H, Ghaderi M, Afzal P, Zaw K (2020) Classification of pyrite types using fractal and stepwise factor analyses in the chah zard gold-silver epithermal deposit, Central Iran. Geochemistry Explor Environ Anal. 20:496–508. https://doi.org/10.1144/geochem-2020-031

  • Mahdavi M, Alavi M, Hossaini dost J (1992) Nahavand geological map. Scal 1:100000, Geological Survey of Iran

  • Mandelbrot BB (1983) The fractal geometry of nature vol 173. WH freeman New York

    Google Scholar 

  • Meigoony MS, Afzal P, Gholinejad M, Yasrebi AB, Sadeghi B (2014) Delineation of geochemical anomalies using factor analysis and multifractal modeling based on stream sediments data in Sarajeh 1: 100,000 sheet. Central Iran Arabian Journal of Geosciences 7:5333–5343. https://doi.org/10.1007/s12517-013-1074-3

    Article  Google Scholar 

  • Mohammadi A, Khakzad A, Omran NR, Mahvi MR, Moarefvand P, Afzal P (2013) Application of number–size (N-S) fractal model for separation of mineralized zones in Dareh-Ashki gold deposit. Muteh Complex, Central Iran. Arabian Journal of Geosciences 6:4387–4398

  • Monecke T, Monecke J, Herzig PM, Gemmell JB, Monch W (2005) Truncated fractal frequency distribution of element abundance data: a dynamic model forthe metasomatic enrichment of base and precious metals. Earth Planet Sci Lett 232:363–378

    Article  Google Scholar 

  • Muller J, Kylander M, Martinez-Cortizas A, Wüst RAJ, Weiss D, Blake K, Coles B, Garcia-Sanchez R (2008) The use of principle component analyses in characterising trace and major elemental distribution in a 55kyr peat deposit in tropical Australia: implications to paleoclimate. Geochim Cosmochim Acta 72:449–463

    Article  Google Scholar 

  • Nazarpour A (2018) Application of C-A fractal model and exploratory data analysis (EDA) to delineate geochemical anomalies in the: Takab 1:25,000 geochemical sheet, NW Iran. Iran J Earth Sci 10:173–180

    Google Scholar 

  • Nazarpour A, Omran NR, Paydar GR (2015) Application of multifractal models to identify geochemical anomalies in Zarshuran au deposit. NW Iran Arabian Journal of Geosciences 8:877–889. https://doi.org/10.1007/s12517-013-1183-z

    Article  Google Scholar 

  • Nouri R, Jafari MR, Arian M, Feizi F, Afzal P (2013) Correlation between cu mineralization and major faults using multifractal modelling in the Tarom area (NW Iran), Geol. Carpathica 64(5):409–416

    Article  Google Scholar 

  • Rahmati A, Afzal P, Abrishamifar SA, Sadeghi B (2015) Application of concentration–number and concentration–volume fractal models to delineate mineralized zones in the Sheytoor iron deposit. Central Iran Arabian Journal of Geosciences 8:2953–2965. https://doi.org/10.1007/s12517-014-1330-1

    Article  Google Scholar 

  • Saadati H, Afzal P, Torshizian H, Solgi A (2020) Geochemical exploration for lithium in ne Iran using the geochemical mapping prospectivity index, staged factor analysis, and a fractal model. Geochemistry Explor Environ Anal 20:461–472. https://doi.org/10.1144/geochem-2020-020

  • Sadeghi B, Moarefvand P, Afzal P, Yasrebi AB, Daneshvar Saein L (2012b) Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran. J Geochem Explor 122:9–19

    Article  Google Scholar 

  • Sadeghi B, Afzal P, Moarefvand P, KhodaShenas N (2012a) Application of concentration-area fractal method for determination of Fe geochemical anomalies and the background in Zaghia area, Central Iran, 34th international geological congress. Brisbane, Australia

    Google Scholar 

  • Shayestehfar MR, Zarrabi A, Sharafi A, Yazdi A (2006) Petrology, petrography and mineralographical studies of Choghart Iron Ore Mine, Bafgh area, Iran. Geochimica et Cosmochimica Acta 70(18–1):A578

  • Stocklin J (1968) Structural history and tectonic of Iran: a review. American Association of Petroleum Geologists Bulletin, USA 52:1229–1258

    Google Scholar 

  • Turcotte DL (2002) Fractals in petrology. Lithos 65:261–271

    Article  Google Scholar 

  • Wang QF, Deng J, Liu H, Yang LQ, Wan L, Zhang RZ (2010) Fractal models for ore reserve estimation. Ore Geol Rev 37:2–14

    Article  Google Scholar 

  • Wang QF, Deng J, Liu H, Wang Y, Sun X, Wan L (2011) Fractal models for estimating local reserves with different mineralization qualities and spatial variations. J Geochem Explor 108:196–208

    Article  Google Scholar 

  • Webb JS, Hawkes HE (1962) Geochemistry in mineral exploration. Harper & Row, New York

    Google Scholar 

  • Yasrebi AB, Wetherelt A, Foster P, Coggan J, Afzal P, Agterberg F, Kaveh Ahangaran D (2014) Application of a density–volume fractal model for rock characterisation of the Kahang porphyry deposit. Int J Rock Mech Min Sci 66:188–193

    Article  Google Scholar 

  • Zuo R, Cheng Q, Xia Q (2009) Application of fractal models to characterization of vertical distribution of geochemical element concentration. J Geochem Explor 102:37–43

    Article  Google Scholar 

  • Zuo R (2011) Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt Tibet, China. Appl Geochem 26:S271–S273

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Islamic Azad University (Mahalat Branch) which provided the financial resources for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taher Farhadinejad.

Additional information

Responsible Editor: Domenico M. Doronzo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darvishi, S., Farhadinejad, T., Aliabadi, M. et al. Separation of au, Ag, As, Cd, Cu, Hg, Mo and Sb geochemical anomalies using the concentration-number (C-N) fractal and classical statistical models in Nahavand 1: 100,000 sheet, Iran. Arab J Geosci 14, 346 (2021). https://doi.org/10.1007/s12517-021-06563-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-06563-z

Keywords

Navigation