Skip to main content
Log in

Investigation of various volume–balance methods in surface irrigation

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Prediction of the water advance phase and infiltration rate is of crucial importance for the design of surface irrigation. The volume–balance model is applied to specify the parameters of infiltration and advance rate. The present research aims to present a volume–balance equation for the Philip infiltration equation using the new two-point method and to compare the proposed method with seven other ones including Elliott-Walker, Ebrahimian-Shepard, Shepard, Valiantaz, Infilt, Mailapalli, and scaling method among others. To satisfy this end, the measured data for six furrows and six borders were considered. The methods described in border irrigation were more accurate than that of furrow irrigation. The results showed that the accuracy of the new two points, Elliott-Walker and Infilt methods, was higher than the other ones. The proposed new two-point’s method has been found as the most appropriate method because it does not require to calculate base infiltration. Also, it requires less input data than Infilt and Elliott-Walker. The accuracy of scaling method was less than other methods but its simplicity is superior to other methods. According to the results, if the furrow end point is used to calculate the scaling factor in the scaling method, the accuracy of this method will be significantly increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamala S, Raghuwanshi N, Mishra A (2014) Development of surface irrigation systems design and evaluation software (SIDES). Comput Electron Agric 100:100–109

    Article  Google Scholar 

  • Chari MM, Davari K, Ghahraman B, ziaiei A N (2019) General equation for advance and recession of water in border irrigation. Irrig Drain 68: 476–487

  • Chari MM, Poozan MT, Afrasiab P (2020) Modeling soil water infiltration variability using scaling. Biosyst Eng 196:56–66

    Article  Google Scholar 

  • Clemmens A, Bautista E (2009) Toward physically based estimation of surface irrigation infiltration. J Irrig Drain Eng 135(5):588–596

    Article  Google Scholar 

  • Duan R, Fedler CB, Borrelli J (2011) Field evaluation of infiltration models in lawn soils. Irrig Sci 29:379–389

    Article  Google Scholar 

  • Ebrahimian H, Liaghat A, Ghanbarian-Alavijeh B, Abbasi F (2010) Evaluation of various quick methods for estimating furrow and border infiltration parameters. Irrig Sci 28(6):479–488

    Article  Google Scholar 

  • Elliott RL, Walker WR (1982) Field evaluation of furrow infiltration and advance functions. Transaction of The ASAE 25(2):396–400

    Article  Google Scholar 

  • Gillies M H (2008) Managing the effect of infiltration variability on the performance of surface irrigation. PHD dissertation. University of Queensland

  • Gillies MH, Smith RJ (2005) Infiltration parameters from surface irrigation advance and run-off data. Irrig Sci 24(1):25–35

    Article  Google Scholar 

  • Ghorbani-Dashtaki S, Homaee M, Mahdian MH, Kouchakzadeh M (2009) Site-dependence performance of infiltration models. Water Resour Manag 23(13):2777–2790

    Article  Google Scholar 

  • Green WH, Ampt GA (1911) Studies on soil physics, 1. The flow of air and water through soils. J Agric Sci 4(1):1–24

    Article  Google Scholar 

  • Holtan HN. 1961. A concept of infiltration estimates in watershed engineering. ARS41–51, U.S. Department of Agricultural Service, WashingtonDC

  • Holzapfel EA, Jara J, Zuniga C, Marino MA, Paredes J, Billib M (2004) Infiltration parameters for furrow irrigation. Agric Water Manag 68:19–32

    Article  Google Scholar 

  • Horton RE (1941) An approach toward a physical interpretation of infiltration-capacity. Soil Sci Soc Am J 5(C):399–417

    Article  Google Scholar 

  • Isbell RF (1996) The Australian soil classification. CSIRO Publishing, Collingwood, p 143

    Google Scholar 

  • James LG (1988) Principles of farm irrigation system design. John Wiley and Sons, New York, p 543

    Google Scholar 

  • Kay M (1990) Recent developments for improving water management in surface irrigation and overhead irrigation. Agric Water Manag 17:7–23

    Article  Google Scholar 

  • Khatri KL, Smith RJ (2005) Evaluation of methods for determining infiltration parameters from irrigation advance data. Irrig Drain 54:467–482

    Article  Google Scholar 

  • Khatri KL, Smith RJ (2006) Real-time prediction of soil infiltration characteristics for the management of furrow irrigation. Irrig Sci 25(1):33–43

    Article  Google Scholar 

  • Kiefer F Jr (1965) Average depth of absorbed water in surface irrigation. Special Publication, \Logan

    Google Scholar 

  • Kostiakov A N (1932) On the dynamics of the coefficient of water percolation in soils and the necessity of studying it from the dynamic point of view for the purposes of amelioration. Transaction of the Sixth Congress of International Society of Soil Science. Russian Part A, 17-21

  • Lewis MR, Milne WE (1938) Analysis of border irrigation. Agric Eng 19(6):267–272

    Google Scholar 

  • McClymont DJ, Smith RJ (1996) Infiltration parameters from optimization on furrow irrigation advance data. Irrig Sci 17(1):15–22

    Article  Google Scholar 

  • Mailapalli DR, Wallender WW, Raghuwanshi NS, Singh R (2008) Quick method for estimating furrow infiltration. J Irrig Drain Eng 134(6):788–795

    Article  Google Scholar 

  • Mailhol JC, Baqri M, Lachhab M (1997) Operative irrigation modelling for real-time applications on closed-end furrows. Irrigation Drainage Sys 11:347–366

    Article  Google Scholar 

  • Merriam JL (1977) Efficient irrigation. California Polytechnic and State University. San Luis Obisgo, California

    Google Scholar 

  • Merriam J.L, Keller J (1978) Farm irrigation system evaluation: a guide for management. Dept. of Agric. and Irrig. Eng., Utah State Univ., Logan, Utah

  • National Engineering Handbook (1974) Border irrigation. In: USA Soil Conservation Service (SCS). DC, Washington chap 4

    Google Scholar 

  • Nie W, Fei L, Ma X (2012) Estimated infiltration parameters and Manning roughness in border irrigation. Irrig Drain 61(2):231–239

    Article  Google Scholar 

  • Kreyszig E (1979) Advanced engineering mathematics. John Wiley and Sons, Inc., New York

    Google Scholar 

  • Philip JR (1957) The theory of infiltration: 3. Moisture profiles and relation to experiment. Soil Sci 84(2):163–178

    Article  Google Scholar 

  • Scaloppi EJ, Merkley GP, Willardson LS (1995) Intake parameters from advance and wetting phases of surface irrigation. J Irrig Drain Eng 121(1):57–70

    Article  Google Scholar 

  • Serralheiro RP (1995) Furrow irrigation advance and infiltration equations for a Mediterranean soil. J Agric Eng Res 62:117–126

    Article  Google Scholar 

  • Seyedzadeh A, Panahi A, Maroufpoor E, Singh V.P, Maheshwari B (2020a) Developing a novel method for estimating parameters of Kostiakov–Lewis infiltration equation. Irrig Sci 38 (2): 189–198

  • Seyedzadeh A, Panahi A, Maroufpoor E (2020b) A new analytical method for derivation of infiltration parameters. Irrig Sci 38:449–460. https://doi.org/10.1007/s00271-020-00686-z

  • Singh, V.P., and Ram, R. S (1983) A kinematic model for surface irrigation: verification by experimental data. Water Resour Res 19 (6): 1599–1612

  • Shepard JS, Wallender WW, Hopmans JW (1993) One-point method for estimating furrow infiltration. Trans ASAE 36(2):395–404

    Article  Google Scholar 

  • Strelkoff TS, Clemmens AJ, El-Ansary M, Awad M (1999) Surface-irrigation evaluation models: application to level basins in Egypt. Trans ASAE 42(4):1027–1036

    Article  Google Scholar 

  • Upadhyaya SK, Raghuwanshi NS (1999) Semiempirical infiltration equations for furrow irrigation systems. J Irrig Drain Eng 125(4):173–178

    Article  Google Scholar 

  • US Department of Agriculture, Natural Resources and Conservation Service (1974) National Engineeri Handbook. In: Section 15. National Technical Information Service, Washington, DC, Border Irrigation Chapter 4

    Google Scholar 

  • Valiantzas JD, Aggelides S, Sassalou A (2001) Furrow infiltration estimation from time to a single advance point. Agric Water Manag 52:17–32

    Article  Google Scholar 

  • Vatankhah AR, Ebrahimian H, Bijankhan M (2010) Discussion of "Quick method for estimating furrow infiltration" by Mailapalli DR, Wallender WW, Raghuwanshi NS, Singh R. J Irrig Drain Eng 136(1):73–75

    Article  Google Scholar 

  • Walker WR (1989) SIRMOD a model of surface irrigation. Utah State University, Logan

    Google Scholar 

  • Walker WR (2005) Multilevel calibration of furrow infiltration and roughness. J Irrig Drain. Eng 131(2):129–136

    Article  Google Scholar 

  • Walker WR, Busman JD (1990) Real-time estimation of furrow infiltration. J Irrig Drain Eng 116(3):299–318

    Article  Google Scholar 

Download references

Funding

This work was supported by the University of Zabol (grant numbers: UOZ-GR-9618-122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mahdi Chari.

Additional information

Responsible Editor: Amjad Kallel

Appendix. Solving the first part of the integral of Eq. (12)

Appendix. Solving the first part of the integral of Eq. (12)

$$ {V}_{\mathrm{Z}1}={\int}_0^xS{\left({\left[\frac{x}{p}\right]}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$r$}\right.}-{\left[\frac{s}{p}\right]}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$r$}\right.}\right)}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}\times ds={\int}_0^xS{\left(\frac{x^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$r$}\right.}-{s}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$r$}\right.}}{p^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$r$}\right.}}\right)}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}\times ds==\underset{0}{\overset{x}{\int }}\frac{S}{p^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2r$}\right.}}{\left({x}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$r$}\right.}-{s}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$r$}\right.}\right)}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}\times ds=\frac{S}{p^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2r$}\right.}}\underset{0}{\overset{x}{\int }}{x}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2r$}\right.}{\left(1-\frac{s^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$r$}\right.}}{x^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$r$}\right.}}\right)}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}\times ds=\frac{S}{p^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2r$}\right.}}\times {x}^{\frac{1}{2r}}\underset{0}{\overset{x}{\int }}{\left(1-{\left(\frac{s}{x}\right)}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$r$}\right.}\right)}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}\times ds $$
(32)

Then using the new variable:

$$ \left\{\begin{array}{c}u=\frac{s}{x}\Longrightarrow \frac{du}{ds}=\frac{1}{x}\Longrightarrow du=\frac{ds}{x}\\ {}\left\{\begin{array}{c}s=0\to u=0\\ {}s=x\to u=1\end{array}\right.\end{array}\right. $$
(33)

By putting \( u=\frac{s}{x} \) value in answer of relation (32):

$$ {V}_{\mathrm{Z}1}=\frac{S}{p^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2r$}\right.}}\times {x}^{\frac{1}{2r}}\underset{0}{\overset{x}{\int }}{\left(1-{\left(\frac{s}{x}\right)}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$r$}\right.}\right)}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}\times ds=\frac{S}{p^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2r$}\right.}}\times {x}^{\frac{1}{2r}}\underset{0}{\overset{x}{\int }}{\left(1-{\left(\frac{s}{x}\right)}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$r$}\right.}\right)}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}\times \frac{x}{x} ds=\frac{S}{p^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2r$}\right.}}\times {x}^{\frac{1}{2r}}\underset{0}{\overset{x}{\int }}{\left(1-{(u)}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$r$}\right.}\right)}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}x\frac{ds}{x}=\frac{S}{p^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2r$}\right.}}\times {x}^{\frac{1}{2r}+1}\underset{0}{\overset{1}{\int }}{\left(1-{(u)}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$r$}\right.}\right)}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}\times du $$
(34)

It can be inferred that (Kreyszig 1979):

$$ \underset{0}{\overset{1}{\int }}{\left(1-{(u)}^b\right)}^{\alpha}\times du=\frac{1}{b}\times \frac{\Gamma \left(\frac{1}{b}\right).\Gamma \left(1+\upalpha \right)}{\Gamma \left(r+\frac{1}{b}+1\right)} $$
(35)

where Γ is gamma function, hence:

$$ \frac{S}{p^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2r$}\right.}}\times {x}^{\frac{1}{2r}+1}\underset{0}{\overset{1}{\int }}{\left(1-{(u)}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$r$}\right.}\right)}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}\times du=\frac{S}{p^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2r$}\right.}}\times {x}^{\frac{1}{2r}+1}\times \left[\frac{1}{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$r$}\right.}\times \frac{\varGamma \left(\frac{1}{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$r$}\right.}\right).\varGamma \left(1+\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.\right)}{\varGamma \left(\frac{1}{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$r$}\right.+\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.+1}\right)}\right]=\frac{S}{p^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2r$}\right.}}\times {x}^{\frac{1}{2r}+1}\times {\sigma}_{{\mathrm{z}}_1} $$
(36)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maghferati, H.R., Chari, M.M., Afrasiab, P. et al. Investigation of various volume–balance methods in surface irrigation. Arab J Geosci 14, 241 (2021). https://doi.org/10.1007/s12517-021-06505-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-06505-9

Keywords

Navigation