Skip to main content

Advertisement

Log in

Methane-derived carbonate formation triggered by the latest Albian anoxia in northwestern Tunisia basins

  • 2nd CAJG 2019
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The late Albian exposures of northwestern Tunisia include authigenic carbonates typified by soft-sediment deformation (slumps) and doughnut-shaped concretions. Planktic foraminiferal biostratigraphy indicates a late Albian age (buxtorfi subzone). The carbonate bodies display veins and fractures partially filled with impsonite (bitumen). The microfacies analysis revealed multiple generations of fibrous and sparry calcite cements, pyrite, and clotted pelmicrite. Scanning electron microscope (SEM) analysis performed on clotted micrite shows the presence of pyrite spheroids and micrometer-sized calcified filamentous structures attributed to anaerobic methanotrophs. Depleted values of δ13C (ranging between − 36.88 and − 11.63‰ PDB) for these carbonates, suggested a thermogenic methane-derived carbon source with a contribution of crude oil to the carbon pool. The petrography and stable isotopes data provide unequivocal evidence that these carbonates are cold seeps–related. The cold seep features indicate that microbial communities have used ascending hydrocarbons and methane fluids and contributed to the precipitation of authigenic carbonates. The paleotemperature calculated from oxygen isotopes of early diagenetic micrite is indicative of parent fluids warmer (68 °C) than those of late Albian seawaters (~ 27 °C). We suggest that hydrothermal fluids linked to volcanic intrusions in the organic-rich lower Fahdene Formation beds may have triggered the release of thermogenic methane flux as cold seeps in the sedimentary basin. The accumulation of methane with other released gases in the water column is triggered by anoxic and stagnant water masses. The sluggish methane flux associated with the upwelling of deep anoxic waters contributes to the carbonate precipitation and the projection of carbonate bodies (e.g., chimney-like shape), induced by microbially mediated anaerobic oxidation of methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agirrezabala LM (2009) Mid-Cretaceous hydrothermal vents and authigenic carbonates in a transform margin, Basque-Cantabrian Basin (western Pyrenees): a multidisciplinary study. Sedimentology 56(4):969–996

    Google Scholar 

  • Agirrezabala LM, Kiel S, Blumenberg M, Schäfer N, Reitner J (2013) Outcrop analogues of pockmarks and associated methane-seep carbonates: a case study from the Lower Cretaceous (Albian) of the Basque-Cantabrian Basin, western Pyrenees. Palaeogeogr Palaeoclimatol Palaeoecol 390:94–115

    Google Scholar 

  • Aloisi G, Bouloubassi I, Heijs SK, Pancost RD, Pierre C, Damsté JSS, Rouchy JM (2002) CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps. Earth Planet Sci Lett 203(1):195–203

    Google Scholar 

  • Ando A, Huber BT, MacLeod KG (2010) Depth-habitat reorganization of planktonic foraminifera across the Albian/Cenomanian boundary. Paleobiology 36(3):357–373

    Google Scholar 

  • Armenteros I (2010) Diagenesis of carbonates in continental settings. Dev Sedimentol 62:61–151

    Google Scholar 

  • Bailey JV, Orphan VJ, Joye SB, Corsetti FA (2009) Chemotrophic microbial mats and their potential for preservation in the rock record. Astrobiology 9(9):843–859

    Google Scholar 

  • Bailey JV, Raub TD, Meckler AN, Harrison BK, Raub TM, Green AM, Orphan VJ (2010) Pseudofossils in relict methane seep carbonates resemble endemic microbial consortia. Palaeogeogr Palaeoclimatol Palaeoecol 285(1–2):131–142

    Google Scholar 

  • Barbieri R, Cavalazzi B (2004) Astrobiological implications of microbial morphologies in cold fluid-generated carbonates. Adv Space Res 33(8):1262–1267

    Google Scholar 

  • Barbieri R, Cavalazzi B (2005) Microbial fabrics from Neogene cold seep carbonates, Northern Apennine, Italy. Palaeogeogr Palaeoclimatol Palaeoecol 227(1–3):143–155

    Google Scholar 

  • Barbieri R, Ori GG, Cavalazzi B (2004) A Silurian cold-seep ecosystem from the Middle Atlas, Morocco. Palaios 19(6):527–542

    Google Scholar 

  • Beauchamp B, Savard M (1992) Cretaceous chemosynthetic carbonate mounds in the Canadian Arctic. Palaios 7(4):434–450

  • Beauchamp B, Harrison JC, Nassichuk WW, Krouse HR, Eliuk LS (1989) Cretaceous cold-seep communities and methane-derived carbonates in the Canadian Arctic. Science 244(4900):53–56

    Google Scholar 

  • Ben Fadhel MB, Layeb M, Hedfi A, Youssef MB (2011) Albian oceanic anoxic events in northern Tunisia: biostratigraphic and geochemical insights. Cretac Res 32(6):685–699

    Google Scholar 

  • Birgel D, Peckmann J, Klautzsch S, Thiel V, Reitner J (2006) Anaerobic and aerobic oxidation of methane at Late Cretaceous seeps in the Western Interior Seaway, USA. Geomicrobiol J 23(7):565–577

    Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407(6804):623–626

    Google Scholar 

  • Bojanowski MJ (2007) Oligocene cold-seep carbonates from the Carpathians and their inferred relation to gas hydrates. Facies 53(3):347–360

    Google Scholar 

  • Bornemann A, Pross J, Reichelt K, Herrle JO, Hemleben C, Mutterlose J (2005) Reconstruction of short-term palaeoceanographic changes during the formation of the Late Albian ‘Niveau Breistroffer’ black shales (Oceanic Anoxic Event 1d, SE France). J Geol Soc 162(4):623–639

    Google Scholar 

  • Boutib L, Melki F, Zargouni F (2000) Tectonique synsedimentaire d’age cretace superieur en Tunisie nord orientale; blocs bascules et reorganisation des aires de subsidence. Bull Soc Géol France 171(4):431–440

    Google Scholar 

  • Bralower TJ, Sliter WV, Arthur MA, Leckie RM, Allard D, Schlanger SO (1993) Dysoxic/anoxic episodes in the Aptian-Albian (Early Cretaceous). The Mesozoic Pacific: Geology, Tectonics, and Volcanism, vol 77. American Geophysical Union, Geophysical Monograph, Washington, pp 5–37

    Google Scholar 

  • Bréhéret JG, Brumsack HJ (2000) Barite concretions as evidence of pauses in sedimentation in the Marnes Bleues Formation of the Vocontian Basin (SE France). Sediment Geol 130(3–4):205–228

    Google Scholar 

  • Buggisch W, Krumm S (2005) Palaeozoic cold seep carbonates from Europe and North Africa—an integrated isotopic and geochemical approach. Facies 51(1–4):566–583

    Google Scholar 

  • Burollet PF (1991) Structures and tectonics of Tunisia. Tectonophysics 195(2–4):359–369

    Google Scholar 

  • Campbell KA, Farmer JD, Des Marais D (2002) Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments. Geofluids 2(2):63–94

    Google Scholar 

  • Campbell KA, Francis DA, Collins M, Gregory MR, Nelson CS, Greinert J, Aharon P (2008) Hydrocarbon seep-carbonates of a Miocene forearc (East Coast Basin), North Island, New Zealand. Sediment Geol 204(3–4):83–105

    Google Scholar 

  • Canet C, Prol-Ledesma RM, Melgarejo JC, Reyes A (2003) Methane-related carbonates formed at submarine hydrothermal springs: a new setting for microbially-derived carbonates? Mar Geol 199(3–4):245–261

    Google Scholar 

  • Catto B, Jahnert RJ, Warren LV, Varejao FG, Assine ML (2016) The microbial nature of laminated limestones: lessons from the Upper Aptian, Araripe Basin, Brazil. Sediment Geol 341:304–315

    Google Scholar 

  • Chihaoui A (2009) La transgression albienne dans la région de Tajerouine en Tunisie Centrale: Stratigraphie, sédimentologie et tectonique synsédimentaire. Doctoral dissertation. Université Joseph Fourier-Grenoble I

  • Chihaoui A, Jaillard E, Latil JL, Zghal I, Susperregui AS, Touir J, Ouali J (2010) Stratigraphy of the Hameima and lower Fahdene Formations in the Tadjerouine area (Northern Tunisia). J Afr Earth Sci 58(2):387–399

    Google Scholar 

  • Chikhaoui M, Maamouri AL, Salaj J, Turki MM, Saadi J, Youssef MB, Zarbout M (1998) Blocs basculés au Crétacé inférieur dans la région du Kef (Tunisie nord-occidentale). Comptes Rendus Acad Sci-Ser IIA-Earth Planet Sci 327(4):265–270

    Google Scholar 

  • Conti S, Fontana D, Mecozzi S, Panieri G, Pini GA (2010) Late Miocene seep-carbonates and fluid migration on top of the Montepetra intrabasinal high (northern Apennines, Italy): relations with synsedimentary folding. Sediment Geol 231(1–2):41–54

    Google Scholar 

  • El Ghali A, Bobier C, Ben Ayed N (2003) Rôle du système de failles EW dans l’évolution géodynamique de l’avant-pays de la chaîne alpine de Tunisie. Exemple de l’accident de Sbiba-Chérichira en Tunisie centrale. Bull Soc Géol France 174(4):373–381

    Google Scholar 

  • Gerdes G, Klenke T, Noffke N (2000) Microbial signatures in peritidal siliciclastic sediments: a catalogue. Sedimentology 47(2):279–308

    Google Scholar 

  • Grossman EL, Ku TL (1986) Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem Geol 59(1):59–74

    Google Scholar 

  • Grötsch J, Schroeder R, Noé S, Flugel E (1993) Carbonate platforms as recorders of high-amplitude eustatic sea-level fluctuations: the late Albian appenninica-event. Basin Res 5(4):197–212

    Google Scholar 

  • Hammer Ø, Nakrem HA, Little CT, Hryniewicz K, Sandy MR, Hurum JH, Høyberget M (2011) Hydrocarbon seeps from close to the Jurassic–Cretaceous boundary, Svalbard. Palaeogeogr Palaeoclimatol Palaeoecol 306(1–2):15–26

    Google Scholar 

  • Hryniewicz K, Hammer Ø, Nakrem HA, Little CT (2012) Microfacies of the Volgian-Ryazanian (Jurassic-Cretaceous) hydrocarbon seep carbonates from Sassenfjorden, central Spitsbergen, Svalbard. Nor J Geol/Norsk Geol Foren 92(2-3):113–131

  • Huber BT, Norris RD, MacLeod KG (2002) Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30(2):123–126

    Google Scholar 

  • Jaillard E, Dumont T, Ouali J, Bouillin JP, Chihaoui A, Latil JL, Zghal I (2013) The Albian tectonic “crisis” in Central Tunisia: nature and chronology of the deformations. J Afr Earth Sci 85:75–86

    Google Scholar 

  • Jauzein A (1967). Contribution à l’étude géologique des confins de la dorsale tunisienne (Tunisie septentrionale). République tunisienne, Secrétariat d’état au plan et à l’économie nationale, Division de la production industrielle

  • Jenkins RG, Hikida Y (2011) Carbonate sediments microbially induced by anaerobic oxidation of methane in hydrocarbon-seeps. In: Tewari VC, Seckbach J (eds) tromatolites, Interaction of microbes with sediments, Springer, Dordrecht, pp 591–605

  • Jenkins RG, Hikida Y, Chikaraishi Y, Ohkouchi N, Tanabe K (2008) Microbially induced formation of ooid-like coated grains in the Late Cretaceous methane-seep deposits of the Nakagawa area, Hokkaido, northern Japan. Island Arc 17(2):261–269

    Google Scholar 

  • Khalifa Z, Affouri H, Rigane A, Jacob J (2018) The Albian oceanic anoxic events record in central and northern Tunisia: geochemical data and paleotectonic controls. Mar Pet Geol 93:145–165

    Google Scholar 

  • Kiel S, Birgel D, Campbell KA, Crampton JS, Schiøler P, Peckmann J (2013) Cretaceous methane-seep deposits from New Zealand and their fauna. Palaeogeogr Palaeoclimatol Palaeoecol 390:17–34

    Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    Google Scholar 

  • Kuechler RR, Birgel D, Kiel S, Freiwald A, Goedert JL, Thiel V, Peckmann J (2012) Miocene methane-derived carbonates from southwestern Washington, USA and a model for silicification at seeps. Lethaia 45(2):259–273

  • Larson RL (1991) Geological consequences of superplumes. Geology 19(10):963–966

    Google Scholar 

  • Layeb M, Ben Fadhel M, Ben Youssef M (2012) Thrombolitic and coral buildups in the Upper Albian of the Fahdene basin (North Tunisia): stratigraphy, sedimentology and genesis. Bull Soc Géol France 183(3):217–231

    Google Scholar 

  • Layeb M, Fadhel MB, Layeb-Tounsi Y, Youssef MB (2014) First microbialites associated to organic-rich facies of the Oceanic Anoxic Event 2 (Northern Tunisia, Cenomanian–Turonian transition). Arab J Geosci 7(8):3349–3363

    Google Scholar 

  • Leckie RM, Bralower TJ, Cashman R (2002) Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 17(3):13–11

    Google Scholar 

  • Little CT, Birgel D, Boyce AJ, Crame JA, Francis JE, Kiel S, Witts JD (2015) Late Cretaceous (Maastrichtian) shallow water hydrocarbon seeps from Snow Hill and Seymour Islands, James Ross Basin, Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 418:213–228

    Google Scholar 

  • Loyd SJ, Sample J, Tripati RE, Defliese WF, Brooks K, Hovland M, Lyons T (2016) Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures. Nat Commun 7:12274

    Google Scholar 

  • Magalhães VH, Pinheiro LM, Ivanov MK, Kozlova E, Blinova V, Kolganova J, Díaz-del-Río V (2012) Formation processes of methane-derived authigenic carbonates from the Gulf of Cadiz. Sediment Geol 243:155–168

    Google Scholar 

  • Maignien L, Parkes RJ, Cragg B, Niemann H, Knittel K, Coulon S, Boon N (2013) Anaerobic oxidation of methane in hypersaline cold seep sediments. FEMS Microbiol Ecol 83(1):214–231

    Google Scholar 

  • Masrouhi A, Koyi HA (2012) Submarine ‘salt glacier’of northern Tunisia, a case of Triassic salt mobility in North African Cretaceous passive margin. Geol Soc Lond, Spec Publ 363(1):579–593

    Google Scholar 

  • Masrouhi A, Bellier O, Koyi H, Vila JM, Ghanmi M (2013) The evolution of the Lansarine–Baouala salt canopy in the North African Cretaceous passive margin in Tunisia. Geol Mag 150(5):835–861

    Google Scholar 

  • Masrouhi A, Bellier O, Koyi H (2014) Geometry and structural evolution of Lorbeus diapir, northwestern Tunisia: polyphase diapirism of the North African inverted passive margin. Int J Earth Sci 103(3):881–900

    Google Scholar 

  • Mattoussi-Kort H, Gasquet D, Ikenne M, Ouazaa NL (2009) Cretaceous crustal thinning in North Africa: implications for magmatic and thermal events in the Eastern Tunisian margin and the Pelagic Sea. J Afr Earth Sci 55(5):257–264

    Google Scholar 

  • Memmi L (1999) L’Aptien et l’Albien de Tunisie biostratigraphie a partir des ammonites. Bull Soc Géol France 170(3):303–309

    Google Scholar 

  • Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293(5529):484–487

    Google Scholar 

  • Ould Bagga MA, Abedeljaouad S, Mercier E (2006) La zone des Nappes de Tunisie: une marge méso-cénozoïque en blocs basculés modérément inversée (région de Taberka/Jendouba; Tunisie nord-occidentale). Bull Soc Géol France 177(3):145–154

    Google Scholar 

  • Peckmann J, Thiel V, Michaelis W, Clari P, Gaillard C, Martire L, Reitner J (1999) Cold seep deposits of Beauvoisin (Oxfordian; southeastern France) and Marmorito (Miocene; northern Italy): microbially induced authigenic carbonates. Int J Earth Sci 88(1):60–75

    Google Scholar 

  • Peckmann J, Reimer A, Luth U, Luth C, Hansen BT, Heinicke C, Reitner J (2001) Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Mar Geol 177(1–2):129–150

    Google Scholar 

  • Peckmann J, Thiel V, Reitner J, Taviani M, Aharon P, Michaelis W (2004) A microbial mat of a large sulfur bacterium preserved in a Miocene methane-seep limestone. Geomicrobiol J 21(4):247–255

    Google Scholar 

  • Peckmann J, Birgel D, Kiel S (2009) Molecular fossils reveal fluid composition and flow intensity at a Cretaceous seep. Geology 37(9):847–850

    Google Scholar 

  • Peckmann J, Kiel S, Sandy MR, Taylor DG, Goedert JL (2011) Mass occurrences of the brachiopod Halorella in Late Triassic methane-seep deposits, eastern Oregon. J Geol 119(2):207–220

    Google Scholar 

  • Petrizzo MR, Huber BT, Wilson PA, MacLeod KG (2008) Late Albian paleoceanography of the western subtropical North Atlantic. Paleoceanography 23(1):1213–1213

  • Reitner J, Peckmann J, Reimer A, Schumann G, Thiel V (2005) Methane-derived carbonate build-ups and associated microbial communities at cold seeps on the lower Crimean shelf (Black Sea). Facies 51(1–4):66–79

    Google Scholar 

  • Ritger S, Carson B, Suess E (1987) Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin. Geol Soc Am Bull 98:147–156

    Google Scholar 

  • Robaszynski F, Caron M, Amédro F, Dupuis C, Hardenbol J (1993) Le Cénomanien de la région de Kalaat Senan (Tunisie centrale): litho-biostratigraphie et interprétation séquentielle. Rev Paléobiol 12(2):351–505

    Google Scholar 

  • Sassen R, Roberts HH, Carney R, Milkov AV, DeFreitas DA, Lanoil B, Zhang C (2004) Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes. Chem Geol 205(3–4):195–217

    Google Scholar 

  • Savard MM, Beauchamp B, Veizer J (1996) Significance of aragonite cements around Cretaceous marine methane seeps. J Sediment Res 66(3):430–438

    Google Scholar 

  • Schlanger SO, Jenkyns HC (1976) Cretaceous oceanic anoxic events: causes and consequences. Geologie En Mijnbouw 55(3-4):179–184

  • Shapiro SR (2004) Recognition of fossil prokaryotes in Cretaceous methane seep carbonates: relevance to astrobiology. Astrobiology 4(4):438–449

    Google Scholar 

  • Smrzka D, Zwicker J, Kolonic S, Birgel D, Little CT, Marzouk AM, Peckmann J (2017) Methane seepage in a Cretaceous greenhouse world recorded by an unusual carbonate deposit from the Tarfaya Basin, Morocco. Depositional Record 3(1):4–37

    Google Scholar 

  • Soua M (2016) Cretaceous oceanic anoxic events (OAEs) recorded in the northern margin of Africa as possible oil and gas shale potential in Tunisia: an overview. Int Geol Rev 58(3):277–320

    Google Scholar 

  • Sun Y, Gong S, Li N, Peckmann J, Jin M, Roberts HH et al (2020) A new approach to discern the hydrocarbon sources (oil vs. methane) of authigenic carbonates forming at marine seeps. Mar Pet Geol 114:104–230

    Google Scholar 

  • Vasconcelos C, McKenzie JA, Bernasconi S, Grujic D, Tiens AJ (1995) Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 377(6546):220–222

    Google Scholar 

  • Vila JM, Ben Youssef M, Chikhaoui M, Ghanmi M (1996) Deuxieme etude de surface d’un grand “glacier de sel” sous-marin albien (250 km 2); les masses triasiques du “diapir” de Ben Gasseur et de l’anticlinal du Kef (Nord-Ouest tunisien). Bull Soc Géol France 167(2):235–246

    Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161(1–3):291–314

    Google Scholar 

  • Williscroft K, Grasby SE, Beauchamp B, Little CT, Dewing K, Birgel D, Hryniewicz K (2017) Extensive Early Cretaceous (Albian) methane seepage on Ellef Ringnes Island, Canadian High Arctic. GSA Bull 129(7–8):788–805

    Google Scholar 

  • Wilson PA, Norris RD (2001) Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature 412(6845):425–429

    Google Scholar 

  • Zouaghi T, Bédir M, Ayed-Khaled A, Lazzez M, Soua M, Amri A, Inoubli MH (2013) Autochthonous versus allochthonous Upper Triassic evaporites in the Sbiba graben, central Tunisia. J Struct Geol 52:163–182

    Google Scholar 

Download references

Acknowledgments

The authors would thank Pr. Jorn Peckmann (University of Hamburg) for providing us with the stable isotopes data and Pr. Kathleen Campbell (The University of Auckland) and Pr. Barbara Cavalazzi (Università di Bologna) who provided helpful comments. We thank Pr. Beatriz Badenas, associate editor, and two anonymous reviewers for their constructive comments which greatly improved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moez Ben Fadhel.

Additional information

Responsible Editor: Attila Ciner

This paper was selected from the 2nd Conference of the Arabian Journal of Geosciences (CAJG), Tunisia 2019

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadhel, M.B., Gallala, N. Methane-derived carbonate formation triggered by the latest Albian anoxia in northwestern Tunisia basins. Arab J Geosci 13, 1230 (2020). https://doi.org/10.1007/s12517-020-06209-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-06209-6

Keywords

Navigation