Skip to main content

Advertisement

Log in

Spatio-temporal assessment and climatology of atmospheric organic carbon over Pakistan

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Organic carbon (OC) is the amount of carbon found in an organic compound. Once entered, the environment OC may cause climate change and effects on public health. The objective of the study was to assess the spatio-temporal trends of OC, climatology, and to develop inventories. The three satellite datasets (MACCity, ACCMIP, RCP 8.5) showed significant different trends in OC levels. Results indicated significantly higher trends in OC distribution during anthropogenic activities and the industrial era as compared with natural sources and the pre-industrial era. The residential and industrial sectors showed higher emission of OC 1.0 × 10−5to 2.5 × 102 Tg/year, respectively as compared with other sectors. Spatial distribution of OC revealed higher levels in bigger cities (Islamabad, Lahore, Karachi, Multan, Punch, and Mardan districts) of Pakistan. The temporal analysis shows irregular increasing trends in OC distribution with the passage of time. Principal component analysis (PCA) revealed that residential OC showed a positive correlation with surface temperature, wind and heat and OC transport, sum, residential, and energy sector with relative humidity in MACCity and RCP 8.5 datasets, respectively. The study indicated that savanna burning and residential sectors were a major contributor to the level of OC. The results will be helpful for the government to devise policies regarding OC management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Glob Biogeochem Cycles 15:955–966

    Article  Google Scholar 

  • Brook J, Graham L, Charland J, Cheng Y, Fan X, Lu G, Li S, Lillyman C, MacDonald P, Caravaggio G (2007) Investigation of the motor vehicle exhaust contribution to primary fine particle organic carbon in urban air. Atmos Environ 41:119–135

    Article  Google Scholar 

  • Cao J, Lee S, Ho K, Zou S, Fung K, Li Y, Watson JG, Chow JC (2004) Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China. Atmos Environ 38:4447–4456

    Article  Google Scholar 

  • Chen Y, Bond T (2010) Light absorption by organic carbon from wood combustion. Atmos Chem Phys 10

  • Chen J, Griffin RJ (2005) Modeling secondary organic aerosol formation from oxidation of α-pinene, β-pinene, and d-limonene. Atmos Environ 39:7731–7744

    Article  Google Scholar 

  • De Gouw J, Jimenez JL (2009) Organic aerosols in the Earth’s atmosphere. ACS Publications

  • De la Campa AS, Pio C, De la Rosa J, Querol X, Alastuey A, González-Castanedo Y (2009) Characterization and origin of EC and OC particulate matter near the Doñana National Park (SW Spain). Environ Res 109:671–681

    Article  Google Scholar 

  • Donahue NM, Robinson AL, Pandis SN (2009) Atmospheric organic particulate matter: from smoke to secondary organic aerosol. Atmos Environ 43:94–106

    Article  Google Scholar 

  • Dumka U, Kaskaoutis D, Devara P, Kumar R, Kumar S, Tiwari S, Gerasopoulos E, Mihalopoulos N (2019) Year-long variability of the fossil fuel and wood burning black carbon components at a rural site in southern Delhi outskirts. Atmos Res 216:11–25

    Article  Google Scholar 

  • Durand F, Shankar D, de Boyer MC, Shenoi S, Blanke B, Madec G (2007) Modeling the barrier-layer formation in the southeastern Arabian Sea. J Clim 20:2109–2120

    Article  Google Scholar 

  • Ellis EC, Novakov T (1982) Application of thermal analysis to the characterization of organic aerosol particles, Studies in Environ Sci. Elsevier, pp 227–238

  • Falkowski P, Scholes R, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290:291–296

    Article  Google Scholar 

  • Fine PM, Cass GR, Simoneit BR (2004) Chemical characterization of fine particle emissions from the fireplace combustion of wood types grown in the Midwestern and Western United States. Environ Eng Sci 21:387–409

    Article  Google Scholar 

  • Frey KE, Smith LC (2005) Amplified carbon release from vast west Siberian peatlands by 2100. Geophys Res Lett 32

  • Glasius M, Ketzel M, Wåhlin P, Jensen B, Mønster J, Berkowicz R, Palmgren F (2006) Impact of wood combustion on particle levels in a residential area in Denmark. Atmos Environ 40:7115–7124

    Article  Google Scholar 

  • Goldstein AH, Galbally IE (2007) Known and unexplored organic constituents in the earth’s atmosphere. ACS Publications

  • Hallquist M, Wenger JC, Baltensperger U, Rudich Y, Simpson D, Claeys M, Dommen J, Donahue N, George C, Goldstein A (2009) The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys 9:5155–5236

    Article  Google Scholar 

  • He K, Yang F, Ma Y, Zhang Q, Yao X, Chan CK, Cadle S, Chan T, Mulawa P (2001) The characteristics of PM2. 5 in Beijing, China. Atmos Environ 35:4959–4970

    Article  Google Scholar 

  • Henze D, Seinfeld J, Ng N, Kroll J, Fu T-M, Jacob DJ, Heald C (2008) Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high-vs. low-yield pathways. Atmos Chem Phys 8:2405–2420

    Article  Google Scholar 

  • Höller R, Tohno S, Kasahara M, Hitzenberger R (2002) Long-term characterization of carbonaceous aerosol in Uji, Japan. Atmos Environ 36:1267–1275

    Article  Google Scholar 

  • Iavorivska L, Boyer EW, DeWalle DR (2016) Atmospheric deposition of organic carbon via precipitation. Atmos Environ 146:153–163

    Article  Google Scholar 

  • Iinuma Y, Brüggemann E, Gnauk T, Müller K, Andreae M, Helas G, Parmar R, Herrmann H (2007) Source characterization of biomass burning particles:the combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat. J Geophys Res-Atmos 112

  • Ji D, Zhang J, He J, Wang X, Pang B, Liu Z, Wang L, Wang Y (2016) Characteristics of atmospheric organic and elemental carbon aerosols in urban Beijing, China. Atmos Environ 125:293–306

    Article  Google Scholar 

  • Jurado E, Dachs J, Duarte CM, Simo R (2008) Atmospheric deposition of organic and black carbon to the global oceans. Atmos Environ 42:7931–7939

    Article  Google Scholar 

  • Kant Y, Shaik DS, Mitra D, Chandola H, Babu SS, Chauhan P (2020) Black carbon aerosol quantification over north-West Himalayas: seasonal heterogeneity, source apportionment and radiative forcing. Environ Pollut 257:113446

    Article  Google Scholar 

  • Kaskaoutis DG, Grivas G, Theodosi C, Tsagkaraki M, Paraskevopoulou D, Stavroulas I, Liakakou E, Gkikas A, Hatzianastassiou N, Wu C (2020) Carbonaceous aerosols in contrasting atmospheric environments in Greek cities: evaluation of the EC-tracer methods for secondary organic carbon estimation. Atmosphere 11:161

    Article  Google Scholar 

  • Khalil M, Rasmussen R (2003) Tracers of wood smoke. Atmos Environ 37:1211–1222

    Article  Google Scholar 

  • Koch D, Del Genio A (2010) Black carbon semi-direct effects on cloud cover: review and synthesis. Atmos Chem Phys 10

  • Lamarque J-F, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B (2010): Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application

  • Lee HS, Kang B-W (2001) Chemical characteristics of principal PM2. 5 species in Chongju, South Korea. Atmos Environ 35:739–746

    Article  Google Scholar 

  • Liakakou E, Stavroulas I, Kaskaoutis D, Grivas G, Paraskevopoulou D, Dumka U, Tsagkaraki M, Bougiatioti A, Oikonomou K, Sciare J (2020) Long-term variability, source apportionment and spectral properties of black carbon at an urban background site in Athens, Greece. Atmos Environ 222:117137

    Article  Google Scholar 

  • Lin P, Hu M, Deng Z, Slanina J, Han S, Kondo Y, Takegawa N, Miyazaki Y, Zhao Y, Sugimoto N (2009) Seasonal and diurnal variations of organic carbon in PM2. 5 in Beijing and the estimation of secondary organic carbon. J Geophys Res: Atmos 114

  • Lonati G, Ozgen S, Giugliano M (2007) Primary and secondary carbonaceous species in PM2. 5 samples in Milan (Italy). Atmos Environ 41:4599–4610

    Article  Google Scholar 

  • Mauderly JL, Chow JC (2008) Health effects of organic aerosols. Inhal Toxicol 20:257–288

    Article  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756

    Article  Google Scholar 

  • Murtaza R, Khokhar MF, Noreen A, Atif S, Hakeem KR (2018) Multi-sensor temporal assessment of tropospheric nitrogen dioxide column densities over Pakistan. Environ Sci Pollut Res:1–14

  • Nunes TV, Pio CA (1993) Carbonaceous aerosols in industrial and coastal atmospheres. Atmospheric Environment. Part . General Topics 27:1339–1346

    Article  Google Scholar 

  • Ohta S, Hori M, Yamagata S, Murao N (1998) Chemical characterization of atmospheric fine particles in Sapporo with determination of water content. Atmos Environ 32:1021–1025

    Article  Google Scholar 

  • Park SS, Kim YJ, Fung K (2001) Characteristics of PM2. 5 carbonaceous aerosol in the Sihwa industrial area, Korea. Atmos Environ 35:657–665

    Article  Google Scholar 

  • Plaza J, Artíñano B, Salvador P, Gómez-Moreno FJ, Pujadas M, Pio CA (2011) Short-term secondary organic carbon estimations with a modified OC/EC primary ratio method at a suburban site in Madrid (Spain). Atmos Environ 45:2496–2506

    Article  Google Scholar 

  • Préndez M, Araya M, Criollo C, Egas C, Farías I, Fuentealba R, González E (2019): Urban Trees and Their Relationship with Air Pollution by Particulate Matter and Ozone in Santiago, Chile, Urban Climates in Latin America. Springer, pp 167–206

  • Saarikoski S, Timonen H, Saarnio K, Aurela M, Järvi L, Keronen P, Kerminen V-M, Hillamo R (2008) Sources of organic carbon in fineparticulate matter in northern European urban air. Atmos Chem Phys 8

  • Srivastava A, Kumar D, Misra A, Kanawade V, Pathak V, Tiwari S, Devara P (2018) Aerosol characteristics in the upper troposphere and lower stratosphere region during successive and contrasting Indian summer monsoon season. Atmos Environ 173:46–52

    Article  Google Scholar 

  • Tagle M, Reyes F, Vásquez Y, Carbone S, Saarikoski S, Timonen H, Gramsch E, Oyola P (2018) Spatiotemporal variation in composition of submicron particles in Santiago Metropolitan Region, Chile. Frontiers in Environmental Science 6:27

    Article  Google Scholar 

  • Thurman EM (2012) Organic geochemistry of natural waters, 2. Springer Science & Business Media

  • Toro Araya R, Flocchini R, Morales Segura RG, Leiva Guzmán MA (2014) Carbonaceous aerosols in fine particulate matter of Santiago Metropolitan Area, Chile. Sci World J 2014

  • Tsigaridis K, Kanakidou M (2003) Global modelling of secondary organic aerosol in the troposphere: a sensitivity analysis. Atmos Chem Phys 3:1849–1869

    Article  Google Scholar 

  • Viidanoja J, Sillanpää M, Laakia J, Kerminen V-M, Hillamo R, Aarnio P, Koskentalo T (2002) Organic and black carbon in PM2. 5 and PM10: 1 year of data from an urban site in Helsinki, Finland. Atmos Environ 36:3183–3193

    Article  Google Scholar 

  • Wang Y, Beirle S, Lampel J, Koukouli M, De Smedt I, Theys N, Li A, Wu D, Xie P, Liu C (2017): Validation of OMI, GOME-2A and GOME-2B tropospheric NO2, SO2 and HCHO products using MAX-DOAS observations from 2011 to 2014 in Wuxi, China: investigation of the effects of priori profiles and aerosols on the satellite products

  • Watson JG, Chow JC, Lowenthal DH, Pritchett LC, Frazier CA, Neuroth GR, Robbins R (1994) Differences in the carbon composition of source profiles for diesel-and gasoline-powered vehicles. Atmos Environ 28:2493–2505

    Article  Google Scholar 

  • Willey JD, Kieber RJ, Eyman MS, Avery GB (2000) Rainwater dissolved organic carbon: concentrations and global flux. Glob Biogeochem Cycles 14:139–148

    Article  Google Scholar 

  • Yadav R, Sahu L, Beig G, Jaaffrey S (2016) Role of long-range transport and local meteorology in seasonal variation of surface ozone and its precursors at an urban site in India. Atmos Res 176:96–107

    Article  Google Scholar 

  • Ye B, Ji X, Yang H, Yao X, Chan CK, Cadle SH, Chan T, Mulawa PA (2003) Concentration and chemical composition of PM2. 5 in Shanghai for a 1-year period. Atmos Environ 37:499–510

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to GEIA for providing the data.

Funding

Special thanks to the Higher Education Commission of Pakistan NRPU projects 7958 and 7964. Further thanks to the Pakistan Science Foundation project PSF/Res/CP/C-CUI/Envr (151).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Zaffar Hashmi, Shuhong Wang or Zulkfil Ahmed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Zhihua Zhang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashmi, M.Z., Ashraf, K., Adnan, S. et al. Spatio-temporal assessment and climatology of atmospheric organic carbon over Pakistan. Arab J Geosci 13, 699 (2020). https://doi.org/10.1007/s12517-020-05723-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-05723-x

Keywords

Navigation