Skip to main content

Advertisement

Log in

Nearshore hydrodynamics and sediment transport processes along the sandy coast of Boumerdes, Algeria

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Boumerdes beach in the center of Zemmouri Bay, the northern part of the Algerian Mediterranean coast, is exposed to very energetic waves, inducing large sediment transport rates and shoreline changes. Estimation of sediment transport (ST) along the Boumerdes coast is challenging as the sediment transport pattern varies both spatially and temporally depending on the hydrodynamic agents, morphological factors, and presence of hard structures etc. This area is defined as being a dynamic sedimentary cell with a west-east-oriented shoreline and protected by hard coastal protection; these sites are experiencing degradation and accretion that continuously disrupt their hydro-sedimentary balance. This study aims to propose a methodology for the evaluation and quantification of the sediment transit along Boumerdes coast on an instantaneous to annual scale. This study is divided in two parts: (1) a short-term study, based on field measurements carried out during low to moderate energy swell conditions with Krauss sediment traps, and permitting to validate both empirical longshore sediment transport formulas (CERC 1984; Kamphuis in J Waterw Port Coast Ocean Eng 117(6):624–640, 1991, the modified Kamphuis 2013 and Van Rijn 2014) and a hydro-sedimentary numerical model and a wave propagation model, and (2) a long-term study, combining global optimization methods using offshore wave data provided from Infoplaza database and wave numerical modeling and SWAN (simulating waves nearshore) model: outputs to define the nearshore wave climate and then to compute the annual longshore transport. Finally, to better understand the longshore dynamic process on a larger scale, the Mike 21/3 FM coupled model simulations were performed for the swell states corresponding to the field conditions. Estimated annual gross longshore sediment transport rate (LSTR) for the study area is 22.02, 4, 3.5, and 11.3 × 105 m3/year based on the CERC (1984), Kamphuis in J Waterw Port Coast Ocean Eng 117(6):624–640 (1991), the Modified Kamphuis by Mil-Homens et al. (2013), and Van Rijn (2014). The LSTR estimate based on the modified Kamphuis formula (2013) was found to be a reliable estimate for the study region because of its realistic estimation, and an RMS (root mean square) error equal to 0.41 and which also includes the wave period, beach slope, and sediment grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Agardy T et al (2005) Coastal systems. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and human well-being: current status and trends. Island Press, Washington DC, pp 795–825

    Google Scholar 

  • Akpınar A, van Vledder GP, Kömürcü Mİ, Özger M (2012) Evaluation of the numerical wave model (SWAN) for wave simulation in the Black Sea. Cont Shelf Res 50:80–99

    Article  Google Scholar 

  • Akpınar A, Bingölbali B, Van Vledder GP (2016) Wind and wave characteristics in the Black Sea based on the SWAN wave model forced with the CFSR winds. Ocean Eng 126:276–298

    Article  Google Scholar 

  • Anthony EJ (2014) The Human influence on the Mediterranean coast over the last 200 years: a brief appraisal from a geomorphological perspective. Géomorphologie: relief, processus, environnement 20:219-226

    Article  Google Scholar 

  • Arnaud G (2016) Houle à la côte Propagation, impacts et ouvrages innovants. Université de Toulon

  • Bagnold R (1963) Mechanics of marine sedimentation, The Sea: Ideas and Observations Interscience 3:4963

  • Bailard JA, Inman DL (1981) An energetics bedload model for a plane sloping beach: local transport. J Geophys Res Oceans 86(C3):2035–2043

    Article  Google Scholar 

  • Bayram A, Larson M, Miller HC, Kraus NC (2001) Cross-shore distribution of longshore sediment transport: comparison between predictive formulas and field measurements. Coast Eng 44:79–99

    Article  Google Scholar 

  • Bayram A, Larson M, Hanson H (2007) A new formula for the total longshore sediment transport rate. Coast Eng 54:700–710

    Article  Google Scholar 

  • Benassai G (2006) Introduction to coastal dynamics and shoreline protection. Wit Press

  • Bertin X, Castelle B, Chaumillon E, Butel R, Quique R (2008) Longshore transport estimation and inter-annual variability at a high-energy dissipative beach: St. Trojan beach, SW Oléron Island, France. Cont Shelf Res 28:1316–1332

    Article  Google Scholar 

  • Bijker EW (1971) Longshore transport computations journal of the waterways. Harb Coast Eng Di 97:687–701

    Google Scholar 

  • Booij N, Holthuijsen L, Ris R (1997) The “SWAN” wave model for shallow water. Coast Eng 1996:668–676

    Article  Google Scholar 

  • Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions: 1. Model description and validation. J Geophys Res Oceans 104:7649–7666

    Article  Google Scholar 

  • Bouhmadouche M, Hemdane Y (2016) Erosion of a sandy coast: continuous follow-up of the coastal groynes of protection in Boumerdes (Algeria). Environ Earth Sci 75:866

    Article  Google Scholar 

  • Boutiba M (2006) Géomorphologie dynamique et mouvements des sédiments le long de la côte sableuse Jijelienne (Est Algérie)

  • Cartier A (2011) Évaluation des flux sédimentaires sur le littoral du Nord-Pas de Calais: vers une meilleure compréhension de la morphodynamique des plages macrotidales

  • Cartier A, Héquette A (2015) Vertical distribution of longshore sediment transport on barred macrotidal beaches, northern France. Cont Shelf Res 93:1–16

    Article  Google Scholar 

  • Cartier A, Larroudé P, Héquette A (2013) Longshore sediment transport measurements on sandy macrotidal beaches compared with sediment transport formulae. In: Sediment transport processes and their modelling applications. IntechOpen

  • Castellanos OF, Mínguez R, Tomás A, Méndez FJ, Losada IJ, Medina R, Camus P, Menéndez M, and Pérez J (2013) AMEVA Toolbox, the Mathematical and Statistical Analysis of Environmental Variables. http://ihameva.ihcantabria.com/

  • CERC (1973) Shore protection manual vol 1. US Army Coastal Engineering Research Center

  • Ciortan R, Mezouar K, Boukhemacha MA, Paduraru G (2008) Measurement and estimation of the longshore sediment transport Boumerdes coast, Algeria. " Ovidius" University Annals Constantza Series Civil Engineering 1:35

  • Dally WR, Dean RG (1984) Suspended sediment transport and beach profile evolution. J Waterw Port Coast Ocean Eng 110:15–33

    Article  Google Scholar 

  • De Falco G et al (2014) Sandy beaches characterization and management of coastal erosion on western Sardinia island (Mediterranean Sea). J Coast Res 70:395–400

    Article  Google Scholar 

  • De Sanjosé Blasco J, Gómez-Lende M, Sánchez-Fernández M, Serrano-Cañadas E (2018) Monitoring retreat of coastal sandy systems using geomatics techniques: Somo Beach (Cantabrian Coast, Spain, 1875–2017). Remote Sens 10:1500

  • Deigaard R, Fredsøe J, Hedegaard IB (1986) Mathematical model for littoral drift. J Waterw Port Coast Ocean Eng 112:351–369

    Article  Google Scholar 

  • Déverchère J, Yelles K, Calais E (2003) Active deformation along the Algerian margin (MARADJA cruise): framework of the May 21, 2003, Mw-6.8 Boumerdes earthquake. In: AGU Fall Meeting Abstracts

  • Doronzo DM, Dellino P (2013) Hydraulics of subaqueous ash flows as deduced from their deposits: 2. Water entrainment, sedimentation, and deposition, with implications on pyroclastic density current deposit emplacement. J Volcanol Geotherm Res 258:176–186

    Article  Google Scholar 

  • Engelund F, Hansen E (1967) A monograph on sediment transport in alluvial streams Technical University of Denmark 0stervoldgade 10, Copenhagen K

  • Fontoura JA, Almeida LE, Calliari LJ, Cavalcanti AM, Möller O Jr, Romeu MAR, Christófaro BR (2012) Coastal hydrodynamics and longshore transport of sand on Cassino Beach and on Mar Grosso Beach, Southern Brazil. J Coast Res 29:855–869

    Google Scholar 

  • Gorrell L, Raubenheimer B, Elgar S, Guza R (2011) SWAN predictions of waves observed in shallow water onshore of complex bathymetry. Coast Eng 58:510–516

    Article  Google Scholar 

  • Hasselmann K et al. (1973) Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP) Ergänzungsheft 8-12

  • Holthuijsen LH (2010) Waves in oceanic and coastal waters. Cambridge University Press

  • Hoque MA, Perrie W, Solomon SM (2017) Evaluation of two spectral wave models for wave hindcasting in the Mackenzie Delta. Appl Ocean Res 62:169–180

    Article  Google Scholar 

  • Infoplaza (2017) www.waveclimate.com

  • Kamphuis JW (1991) Alongshore sediment transport rate. J Waterw Port Coast Ocean Eng 117(6):624–640

    Article  Google Scholar 

  • Khalifa M, Ganainy ME, Nasr R (2009) Wave transformation and longshore sediment transport evaluation for the Egyptian northern coast, via extending modern formulae. J Coast Res:755–767

    Article  Google Scholar 

  • Komar PD (1978) Relative quantities of suspension versus bed-load transport on beaches. SEPM Journal of Sedimentary Research 48

  • Komar PD (1979) Beach-slope dependence of longshore currents journal of the waterway. Port, Coastal and Ocean Division 105:460–464

    Google Scholar 

  • Komar PD (1998) Beach processes and sedimentation. Prentice Hal

  • Komar PD, Inman DL (1970) Longshore sand transport on beaches. J Geophys Res 75:5914–5927

    Article  Google Scholar 

  • Kraus NC (1987) Application of portable traps for obtaining point measurements of sediment transport rates in the surf zone. J Coast Res:139–152

  • Kraus NC, Isobe M, Igarashi H, Sasaki TO, Horikawa K (1982) Field experiments on longshore sand transport in the surf zone. Coast Eng 1982:969–988

    Google Scholar 

  • Larroudé P (2008) Methodology of seasonal morphological modelisation for nourishment strategies on a Mediterranean beach. Mar Pollut Bull 57:47–52

    Article  Google Scholar 

  • Longuet-Higgins MS (1970) Longshore currents generated by obliquely incident sea waves: 1. J Geophys Res 75:6778–6789

    Article  Google Scholar 

  • Louati M, Zargouni F (2009) Modélisation topo-bathymétrique et transit sédimentaire. Exemple des plages sableuses de la baie de Tunis, Nord-Est de la Tunisie. Géomorphologie: relief, processus, environnement 15:211-222

    Article  Google Scholar 

  • Luijendijk A, Hagenaars G, Ranasinghe R, Baart F, Donchyts G, Aarninkhof S (2018) The state of the world’s beaches. Sci Rep 8:6641. https://doi.org/10.1038/s41598-018-24630-6

    Article  Google Scholar 

  • Mandang I, Nur AA (2017) A numerical simulation of wave and sediment transport in the balikpapan Bay, East Kalimantan, Indonesia. In: AIP Conference Proceedings. AIP Publishing, p 070002

  • Manson G (2012) Configuration of Mike21 for the simulation of nearshore storm waves, currents and sediment transport-Brackley Bight, Prince Edward Island. Natural Resources Canada, Geological Survey of Canada,

  • Mil-Homens J, Ranasinghe R, van Thiel de Vries JSM, Stive M (2013) Re-evaluation and improvement of three commonly used bulk longshore sediment transport formulas. Coast Eng 75:29–39

    Article  Google Scholar 

  • Nair LS, Sundar V, Kurian N (2015) Longshore sediment transport along the coast of Kerala in southwest India. Procedia Eng 116:40–46

    Article  Google Scholar 

  • Ozhan E (2002) Coastal erosion management in the Mediterranean: an overview

  • Pallares E, Sànchez-Arcilla A, Espino M (2014) Wave energy balance in wave models (SWAN) for semi-enclosed domains—application to the Catalan coast

  • PNUE/PAM/CAR/ASP (2005) Programme d’Aménagement Côtier (PAC)“Zone côtière algérois, rapport d'Activité:Protection des sites sensibles naturels marins du secteur Cap Djinet au Mont Chenoua Impacts des activités anthropiques. Ministère de l’Aménagement du Territoire et del’Environnement, 94p

  • Raventós JS, Montori C (2002) Coastal erosion: new concepts, policies and examples. Paper presented at the Erosion littorale en Méditerranée occidentale Tanger, 18-21 septembre 2002

  • Ris R, Holthuijsen L, Booij N (1999) A third-generation wave model for coastal regions: 2. Verification. J Geophys Res Oceans 104:7667–7681

    Article  Google Scholar 

  • Rosati JD, Gingerich KJ, Kraus NC (1990) Superduck surf zone sand transport experiment. Coastal Engineering Research Center Vicksburg MS

  • Sabatier F, Stive MJ, Pons F (2005) Longshore variation of depth of closure on a micro-tidal wave-dominated coast. In: Coastal Engineering 2004: (In 4 Volumes). World Scientific, pp 2327-2339

  • Sabatier F, Samat O, Chaibi M, Lambert A, Pons F (2004) Transport sédimentaire de la dune à la zone du déferlement sur une plage sableuse soumise à des vents deterre Actes des VIII èmes Journées Nationales Génie Civil-Génie Côtier:223–229

  • Sallaye M, Mezouar K, Cherif YS, Dahmani AEA (2018) Morphological evolution of center Boumerdes in Zemmouri Bay (Algeria) from 1922 to 2017. Arab J Geosci 11:602

    Article  Google Scholar 

  • Shanas P, Kumar VS (2014) Coastal processes and longshore sediment transport along Kundapura coast, central west coast of India. Geomorphology 214:436–451

    Article  Google Scholar 

  • Than VV (2015) Modélisation d'érosion côtière: application à la partie Ouest du tombolo de Giens. Aix-Marseille

  • Van Rijn LC (2013) Basic hydrodynamic processes in the coastal zone.www.leovanrijn-sediment.com

  • Van Rijn LC (2014) A simple general expression for longshore transport of sand, gravel and shingle. Coast Eng 90:23–39

    Article  Google Scholar 

  • Walton TL Jr, Bruno RO (1989) Longshore transport at a detached breakwater, phase II. J Coast Res 679–691

  • Walton TL Jr, Dean RG (2010) Longshore sediment transport via littoral drift rose. Ocean Eng 37:228–235

    Article  Google Scholar 

  • Wang P, Kraus NC, Davis RA Jr (1998) Total longshore sediment transport rate in the surf zone: field measurements and empirical predictions. J Coast Res:269–282

  • Watanabe A (1993) Total rate and distribution of longshore sand transport. Coast Eng 1992:2528–2541

    Google Scholar 

  • Xie D-m, Zou Q-p, Cannon JW (2016) Application of SWAN+ ADCIRC to tide-surge and wave simulation in Gulf of Maine during Patriot's Day storm. Water Sci Eng 9:33–41

    Article  Google Scholar 

  • Young IR (1999) Wind generated ocean waves vol 2. Elsevier,

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousra Salem Cherif.

Additional information

Responsible Editor: Domenico M. Doronzo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salem Cherif, Y., Mezouar, K., Guerfi, M. et al. Nearshore hydrodynamics and sediment transport processes along the sandy coast of Boumerdes, Algeria. Arab J Geosci 12, 800 (2019). https://doi.org/10.1007/s12517-019-4981-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-019-4981-0

Keywords

Navigation