Skip to main content
Log in

Reliability of geotechnical structures: case of bearing capacity failure of strip footing

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Traditionally, the design of geotechnical structures is based on a deterministic approach in which all parameters take a fixed value, which leads to an oversized and unjustified underestimation of the bearing capacity of soil, as well as the overestimation of stress. However, the effects on structure safety of uncertainties associated with the design parameters are not quantifiable. An alternative method with which to study the reliability of geotechnical structures is based on the theory of probability and involves the application of partial safety factors for all design parameters (random variables). These factors are derived using probabilistic methods and take into account the dispersion of soil parameters (stochastic model). In this paper, a benchmark for a strip footing with axial load was used, with security expressed via a probability of failure or reliability index and evaluated by means of a universal computer code based on probabilistic methods. Analysis is carried out by considering the various types of parameter distributions, thereby enabling a better assessment of the effects of uncertainty and the identification of a set of parameters with high incidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ayyub BM, Chao RJ, Patev RC, Leggett MA (1998) Reliability and stability assessment of concrete gravity structures. Theoretical manual, US Army corps of engineers

  • Barakat S, Alzubaidi R, Omar M (2015) Probabilistic-based assessment of the bearing capacity of shallow foundations. Arab J Geosci 8:6441–6457

    Article  Google Scholar 

  • Belabed L (1996) Zuverl\( \ddot{\mathrm{a}} \)ssigkeitsuntersuchung des Tragsystems. Mehrfach verankerte St\( \ddot{\mathrm{u}} \)tzw\( \ddot{\mathrm{a}} \)nde, mit probabilistischen methoden. Thèse de doctorat, université de Weimar, Allemagne

  • Cherubini C (2000) Reliability evaluation of shallow foundation bearing capacity on c´, φ´ soils. Can Geotech J 37:264–269

    Google Scholar 

  • Christian JT, Baecher GB (1999) Point estimate method as numerical quadrature. J Geotech Geoenviron 125:779–786

    Article  Google Scholar 

  • Chu X, Li L, Wang Y (2015, 2015) Slope reliability analysis using length-based representative slip surfaces. Arab J Geosci. https://doi.org/10.1007/s12517-015-1905-5

  • El-ramly H, Morgenstern NR, Cruden DM (2005) Probabilistic assessment of stability of a cut slope in residual soil. Géotechnique 55:77–84

    Article  Google Scholar 

  • Eurocode 7 (2011) Geotechnical design. Part 1 «general rules»

  • Evans M, Hastings N, Peacock B (1993) Statistical distributions. Wiley, New York

    Google Scholar 

  • Fieβler B, Hawranek H, Rackwitz R (1976) Numerische Methoden für probabilistische Bemessungsverfahren und Sicherheitsnachweise, Heft 14. TU München, Germany

    Google Scholar 

  • Freudenthal AM, Garrelts JM, Shinozuka M (1966) The analysis of structural safety. J Struct Div ASCE 92(ST1):267–325

    Google Scholar 

  • Gäβler G (1987) Vernagelte Gel\( \ddot{\mathrm{a}} \)ndespr\( \ddot{\mathrm{u}} \)nge-Tragverhalten und Standsicherheit. Thèse de doctorat, Heft 108, université de Karlsruhe, Allemagne

  • Genske D D, Walz B (1987) Anwendung der probabilistischen Sicherheitstheorie auf Grundbruchberechnungen nach DIN 4017. Geotechnik n°10, p. 53–66

  • Harr MT (1989) Probabilistic estimates for multivariate analyses. Appl Math Model 13(5):313–318

    Article  Google Scholar 

  • Hasofer AM, Lind NC (1974) Exact and invariant second-moment code format. Journal of the engineering mechanics division. ASCE 100(EM):111–121

    Google Scholar 

  • Hong HP (1998) An efficient point estimate method for probabilistic analysis. Reliab Eng Syst Saf 59(3):261–267

    Article  Google Scholar 

  • Jiang SH, Li DQ, Cao ZJ, Zhou CB, Phoon KK (2015) Efficient system reliability analysis of slope stability in spatially variable soils using Monte Carlo simulation. J Geotech Geoenviron Eng 141(2):04014096

    Article  Google Scholar 

  • Katzenbach R, Moormann C (2003) Überlegungen zu stochastischen Methoden in der Bodenmechanik am Beispiel des Frankfurter Tons. Beiträge anlässlich des 60. Geburtstages von Herrn Prof. Dr. S. Semprich, Heft 16 der Gruppe Geotechnik, Technische Universität Graz: pp. 255–282

  • Lacasse S, Nadim F (1996) Uncertainties in characterizing soil properties. In: Uncertainty in the geologic environment: from theory to practice. Shackelford CD, Nelson PP, Roth MJS (eds) Proceedings of Uncertainty 96, ASCE Geotechnical Special publication No. 58, pp. 49–75

  • Lemaire M (2005) Fiabilité des structures-Couplage mécano-fiabiliste statique. Hermès

  • Li KS (1992) Point-estimate method for calculating statistical moments. J Eng Mech ASCE 118(7):1506–1511

    Article  Google Scholar 

  • Li DQ, Qi XH, Cao ZJ, Tang XS, Zhou W, Phoon KK, Zhou CB (2015) Reliability analysis of strip footing considering spatially variable undrained shear strength that linearly increases with depth. Soils Found 55(4):866–880

    Article  Google Scholar 

  • Lind NC (1983) Modelling uncertainty in discrete dynamical systems. Appl Math Model 7(3):146–152

    Article  Google Scholar 

  • Lumb P (1969) Safety factors and the probability distribution of soil strength. Can Geotech J 7(3):225–242

    Article  Google Scholar 

  • Nottrodt H P (1990) Beitrag zur Einf\( \ddot{\mathrm{u}} \)hrung semiprobabilistischer Methoden in der Geotechnik. Thèse de doctorat, université de Weimar, Allemagne

  • Ogunsanwo O (1985) Variability in the shear strength characteristics of an amphibolite Drived laterite soil. Bulletin of the international Association of Engineering Geology, N°32, Paris

  • Orr TLL (2000) Selection of characteristic values and partial factors in geotechnical designs to Eurocode 7. Comput Geotech 26:263–279

    Article  Google Scholar 

  • Prandtl L (1921) Eindringungsfestigkeit und Festigkeit von Schneiden. Z Angew Math Mech 1:15–20

    Article  Google Scholar 

  • Rosenblatt M (1952) Remarks on a multivariate transformation. Ann Math Stat 23(3):470–472

    Article  Google Scholar 

  • Rosenblueth E (1975) Point estimates for probability moments. Proc Natl Acad Sci USA 72(10):3812–3814

    Article  Google Scholar 

  • Rosenblueth E (1981) Two-point estimates in probabilities. Appl Math Model 5(2):329–335

    Article  Google Scholar 

  • Russelli C (2008) Probabilistic methods applied to the bearing capacity problem. These de doctorat, Université de Stuttgart, Almagne

  • Lizarraga HS, Lai CG (2014) Effects of spatial variability of soil properties on the seismic response of an embankment dan. Soil Dyn Earthq Eng 64:113–128

    Article  Google Scholar 

  • Schneider H R (1999) Definition and determination of characteristic soil properties. In: Proceeding XII international conference on soil mechanics and geotechnical engineering, Vol 4, Hamburg, 1999, p 2271–4

  • Seung-Kyum C, Ramana VG, Robert AC (2007) Reliability-based structural design. Springer-Verlag, London Limited 2007

  • Srivastava A, Babu GLS (2009) Effect of soil variability on the bearing capacity of clay and in slope stability problems. Eng Geol 108:142–152

    Article  Google Scholar 

  • Terzaghi K (1943) Theoretical soil mechanics. Whiley, New York

    Book  Google Scholar 

  • Wolf TH (1985) Analysis and design of embankment dam slopes a probabilistic approach. Phd Thesis, purdue University, Lafayette, Indiana.

  • Zhou J, Nowak AS (1988) Integration formulas to evaluate functions of random variables. Struct Saf 5:267–284

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Sekfali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekfali, N., Belabed, L. Reliability of geotechnical structures: case of bearing capacity failure of strip footing. Arab J Geosci 11, 296 (2018). https://doi.org/10.1007/s12517-018-3649-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-018-3649-5

Keywords

Navigation