Skip to main content
Log in

Trace metal contamination by phosphogypsum discharge in surface and core sediments of the Gabes coast area (SE of Tunisia)

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The purpose of the present study is to ascertain the extent of the effect that phosphate fertilizer industrial waste has on the surface and bottom sediments of the Ghannouch-Gabes coast, off the Tunisian Mediterranean Sea. To achieve this, 44 surface sediments and 3 core sediments were studied for mineralogy, trace metals (Cd, Cu, Pb, and Zn), F, CaO, and SO3. For all the analyzed elements, the spatial distribution in surface sediments showed that the area located between the commercial and the fishing port of Gabes is the most polluted zone. The ranking of metal contents was found to be Zn > Cd > Cu > Pb. The vertical distribution of trace metals indicated that the highest levels were found in the uppermost segment of the sediment cores compared to the lower depth subsurface due to a continuous input of phosphogypsum (PG) release and confirmed that the area between the two harbors suffered from several types of pollutants compared to reference core C1, collected from other non-industrialized areas. This spatial and vertical distribution is probably due to the harbor piers which acted as barriers and limited the dispersion of PG discharge. The contamination factor, the geoaccumulation index, and the pollution load index were determined. The results obtained confirm the anthropogenic impact on the levels of metal, on the fluorine, calcium, and sulfate concentrations in the area, located between the commercial harbor of Ghannouch and the fishing harbor of Gabes, whereas the concentrations of elements analyzed tends to decrease on both sides of this sector. Statistical analyses (principal component analysis) showed trace metals, fluoride, sulfate, and a large amount of calcium resulting from the same anthropogenic source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abu Hilal A (1985) Phosphate pollution in the Jordan gulf of Aqaba. Mar Pollut Bull 16(07):281–285

    Article  Google Scholar 

  • Aloulou F, ElEuch B, Kallel M (2011) Benthic foraminiferal assemblages as pollution proxies in the northern coast of Gabes Gulf, Tunisia. Environ Monit Assess 184:777–795. https://doi.org/10.1007/s10661-011-2001-2

    Article  Google Scholar 

  • Armstrong-Altrin JS, Machain-Castillo ML (2016) Mineralogy, geochemistry, and radiocarbon ages of deep sea sediments from the Gulf of Mexico, Mexico. J S Am Earth Sci 71:182–200

    Article  Google Scholar 

  • Armstrong-Altrin JS, Machain-Castillo ML, Rosales-Hoz L, Carranza-Edwards A, Sanchez-Cabeza JA, Ruíz-Fernández AC (2015a) Provenance and depositional history of continental slope sediments in the southwestern Gulf of Mexico unraveled by geochemical analysis. Cont Shelf Res 95:15–26

    Article  Google Scholar 

  • Armstrong-Altrin JS, Nagarajan R, Balaram V, Natalhy-Pineda O (2015b) Petrography and geochemistry of sands from the Chachalacas and Veracruz beach areas, western Gulf of Mexico, Mexico: constraints on provenance and tectonic setting. J S Am Earth Sci 6:199–216

    Article  Google Scholar 

  • Armstrong-Altrin JS, Lee IY, Kasper-Zubillaga JJ, Trejo- Ramirez E (2017) Mineralogy and geochemistry of sands along the Manzamillo and El Carrizal beach areas, southern Mexico: implications for paleoweathering provenance and tectonic setting. Geol J 52:559–582

    Article  Google Scholar 

  • Arocena JM, Rutherford PM, Dudas MJ (1995) Heterogeneous distribution of trace elements and fluorine in phosphoypsum by product. Sci Total Environ 162:149–160

    Article  Google Scholar 

  • Atalar M, Kucuksezgin F, Duman ML, Gonul T (2013) Heavy metal concentrations in surficial and core sediments from Izmir Bay: an assessment of contamination and comparison against sediment quality benchmarks. Bull Environ Contam Toxicol 91:69–75

    Article  Google Scholar 

  • Bastami KD, Bagheri H, Kheirabadi V, Zaferani GG, Teymori MB, Hamzehpoor A, Soltani F, Haghparast S, Harami SRM, Ghorghani NF, Ganji S (2014) Distribution and ecological risk assessment of heavy metals in surface sediments along southeast coast of the Caspian Sea. Mar Pollut Bull 81:262–267

    Article  Google Scholar 

  • Bejaoui B, Rais A, Koutitonsky VG (2004) Modélisation de la dispersion du phosphogypse dans le golfe de Gabès. Bull INSTM 31:113–119

    Google Scholar 

  • Ben Amor R (2001) Hydrodynamique sédimentaire au large du Golfe of Gabes. DEA, FST, 86p

  • Ben Amor R, Gueddari M (2016) Major ion geochemistry of Ghannouch–Gabes coastline (at Southeast Tunisia, Mediterranean Sea): study of the impact of phosphogypsum discharges by geochemical modeling and statistical analysis. Environ Earth Sci 75:851. https://doi.org/10.1007/s12665-016-5666-6

    Article  Google Scholar 

  • Ben Ouezdou H (1987) Etude morphologique et stratigraphique des formations quaternaires des alentours du Golfe de Gabès. Rev des Sci de la Terre 5:165

    Google Scholar 

  • Boudjellal B, Sellali B, Benoud D, Mallem MT (1993) Métaux lourds dans les sédiments superficiels de la baie d'Alger. Workshop: circulation des eaux et pollution des côtes méditerranéennes des pays du Maghreb. Rabat, Maroc, Novembre 9-11, 153–156

  • Bradai MN, Ghorbel M, Bouain A (1995) Aperçu sur l'activité de pêche dans le gouvernement de Sfax. Cah CERES Sér Géogr 1:211–236

    Google Scholar 

  • Buccolieri A, Buccolieri G, Cardellicchio ADA, Di Leo A, Maci A (2006) Heavy metals in marine sediments of Taranto Gulf (Ionian Sea, Southern Italy). Mar Chem 99:227–235

    Article  Google Scholar 

  • Cha HJ, Choi MS, Lee CB, Shin DH (2006) Geochemistry of surface sediments in the southwestern east/Japan Sea. J Asian Earth Sci 29:685–697

    Article  Google Scholar 

  • Da Lazzari A, Rampazzo G, Pavoni B (2004) Geochemistry of sediments in the northern and central Adriatic Sea. Estuar Coast Shelf Sci 59:429–440

    Article  Google Scholar 

  • Folk RL (1966) Review of grain size sedimentology. Sedimentology 6:3–27

  • Folk RL, Ward WC (1957) Brazos river bar: a study in the significance of grain size parameters. J Sediment Petrol 27(1):3–27

    Article  Google Scholar 

  • Gao X, Chen CTA (2012) Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Res 46:1901–1911

    Article  Google Scholar 

  • Garrett M, Wolny J, Truby E, Heil C, Kovach C (2011) Harmful algal bloom species and phosphate-processing effluent: field and laboratory studies. Mar Pollut Bull 62:596–601

    Article  Google Scholar 

  • Ghafoori N, Chang Wen F (1986) Engineering characteristics of dihydrate phosphogypsum-based concrete. Proceedings of the third workshop on by products of phosphate industries. Publ. n°01-031-046, Florida Institute of phosphate Research, 185–210

  • Gonzalez-Fernandez D, Garrido-Perrez MC, Nebot-Sanz E, Sales-Marquez D (2011) Source and fate of heavy metals in marine sediments from a semi-enclosed deep embayment subjected to severe anthropogenic activities. Water Air Soil Pollut 222:191–202

    Article  Google Scholar 

  • Gouidera M, Fekia M, Sayadi S (2009) Separative recovery with lime of phosphate and fluoride from an acidic effluent containing H3PO4, HF and/or H2SiF6. J Hazard Mater 170:962–968

    Article  Google Scholar 

  • Groupe Chimique Tunisien GCT (1992) Etude de l'impact sur l'environnement des rejets de phosphogypse des unités SIAPE à Gabes, Tunisie, Phase I: Etude préliminaire. Rapp Provisoire 1:175

  • Groupe Chimique Tunisien GCT (2003) Etude d'impact des rejets de phosphogypse de l'unité d'acide phosphorique. Internal Report. 191p

  • Hakanson L (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14:975–1001

    Article  Google Scholar 

  • I.N.M. National Institut of Meteorology (2015) Internal Report. 109p

  • Jedoui Y (2000) Sédimentologie et géochronologie des dépôts littoraux quaternaires : Reconstitution des variations des paléoclimats et du niveau marin dans le Sud Est Tunisien. Thèse Doct. Etat, FST, 338p

  • Jiang X, Teng A, Xu W, Liu X (2014) Distribution and pollution assessment of heavy metals in surface sediments in the Yellow Sea. Mar Pollut Bull 83:366–375

    Article  Google Scholar 

  • Lopez-Sanchez JF, Rubio R, Samitier C, Rauret G (1996) Trace metal partitioning in marine sediments and sludges deposited of the coast of Barcelona (Spain). Water Res 30:153–159

    Article  Google Scholar 

  • Martin JM, Whitfield M (1983) The significance of the rive input of chemical elements to the ocean. In: Wong CS, Boyle E, Brul KW, Burton JD, Goldberg ED (eds) Trace metals in sea water. Plenum Press, New York, pp 265–296

    Chapter  Google Scholar 

  • Muller G (1980) Heavy metals in the sediments of the Rhine-Changes seity. Ther Umsch 79:778–783

    Google Scholar 

  • Nordstron DK, Jenne EA (1977) Fluorite solubility equilibria in selected geothermal maters. Geochim Cosmochim Acta 41:175–188

    Article  Google Scholar 

  • Oueslati A (2004) Littoral et développement en Tunisie. Ed. Orbis impression, 231p

  • Papanicolaou F, Antoniou S, Pashalidis I (2009) Experimental and theoretical studies on physico-chemical parameters affecting the solubility of phosphogypsum. J Env Rad 100:854–857

    Article  Google Scholar 

  • Rais M (1999) Géochimie des métaux lourds (FE, Mn, Pb, Zn, Cu, Ni et Cd) dans les eaux et les sédiments du littoral de Golfe de Tunis. Mobilité et impact des activités anthropiques. PhD Thesis, University of Tunis el Manar

  • Ramos-Vasquez MA, Armstrong-Altrin JS, Rosales-Hoz L, Machain-Castillo ML, Carranza Edwards A (2017) Geochemistry of deep-sea sediments in two cores retrieved at the mouth of the Coatzacoalcos River delta, western Gulf of Mexico, Mexico. Arab J Geosci 10:148

    Article  Google Scholar 

  • Rutherford PM, Dudas MJ, Samek RA (1994) Environmental impacts of phosphogypsum. Sci Total Environ 149:1–38

    Article  Google Scholar 

  • Sammari C, Koutitonsky VG, Moussa M (2006) Sea level variability and tidal resonance in the Gulf of Gabes, Tunisia. Cont Shelf Res 26(3):338–335

    Article  Google Scholar 

  • Seshan BRR, Natesan U, Deepthi K (2010) Geochemical and statistical approach for evaluation of heavy metal pollution in core sediments in southeast coast of India. Int J Environ Sci Technol 7(2):291–306

    Article  Google Scholar 

  • Tomlinson DC, Wilson JG, Harris CR, Jeffery DW (1980) Problems in the assessment of heavy metals levels in estuaries and the formation of a pollution index. Env Eval 33:566–575

    Google Scholar 

  • Varol M (2011) Assessment of heavy metal contamination in sediments of the Tigris River ( Turkey) using pollution indices and multivariate statistical techniques. J Hazard Mater 195:355–364

    Article  Google Scholar 

  • Wang Y, Hu J, Xiong K, Huang X, Duan S (2012) Distribution of heavy metals in core sediments from Baihua Lake. Pra Env Sci 16:51–58

    Article  Google Scholar 

  • Wang H, Wang J, Liu R, Yu W, Shen Z (2015) Spatial variation, environmental risk and biological hazard assessment of heavy metals in surface sediments of the Yangtze River estuary. Mar Pollut Bull 93:250–258

    Article  Google Scholar 

  • Zaghden H, Kallel M, Elleuch B, Oudot J, Saliot A, Sayadi S (2014) Evaluation of hydrocarbon pollution in marine sediments of Sfax coastal areas from the Gabes Gulf of Tunisia, Mediterranean Sea. Environ Earth Sci 72:1073–1082

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their sincere thanks to those who contributed to this study. We would also like to thank the anonymous reviewers and the associate editor Pr. Armstrong-Altrin J.S. who helped in improving the quality of the manuscript through their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rim Ben Amor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amor, R.B., Abidi, M. & Gueddari, M. Trace metal contamination by phosphogypsum discharge in surface and core sediments of the Gabes coast area (SE of Tunisia). Arab J Geosci 11, 207 (2018). https://doi.org/10.1007/s12517-018-3521-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-018-3521-7

Keywords

Navigation