Skip to main content
Log in

Depositional environment and tectono-provenance of Upper Kaimur Group sandstones, Son Valley, Central India

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Mesoproterozoic Upper Kaimur Group consists of Bijaigarh Shale, Scarp Sandstone, and Dhandraul Sandstone. Based on the lithofacies data set, two major facies associations were identified, namely—tidal sand flat/sand bar facies association (TSFA) and tidally influenced fluvial channel facies/tidal channel facies association (TIFCFA). The Dhandraul Sandstone has been interpreted as a product of TIFCFA and the underlying Scarp Sandstone in TSFA which endorses a tidal dominated estuarine setting. Detrital modes of the Dhandraul and Scarp Sandstones fall in the quartz arenite to sub-litharenite types. Petrographical data suggest that the deposition of the Upper Kaimur Group sandstones took place in humid climate and was derived from mixed provenances. The sandstone composition suggests detritus from igneous rocks, metamorphic rocks, and recycled sedimentary rocks. The sandstone tectonic discrimination diagrams suggest that the provenances of the Upper Kaimur Group sandstones were continental block, recycled orogen, rifted continental margin to quartzose recycled tectonic regimes. It is envisaged that the Paleo- and Mesoproterozoic granite, granodiorite, gneiss, and metasedimentary rocks of Mahakoshal Group and Chotanagpur granite–gneiss present in the western and northwestern direction are the possible source rocks for the Upper Kaimur Group in the Son Valley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ahmad AHM, Bhat GM (2006) Petrofacies, provenance and diagenesis of the Dhosa Sandstone Member (Chari Formation) at Ler, Kachchh sub-basin, Western India. J Asi Earth Sci 27:857–872

    Article  Google Scholar 

  • Ahmad AHM, Rao LAK, Majid A, Kaur H (2009) Depositional environment, provenance and diagenesis of Patherwa Formation Sandstone (Semri Group), Son Valley, Uttar Pradesh. Proc Ind Nat Sci Academy 75:10–18

    Google Scholar 

  • Akhtar K, Ahmad AHM (1991) Single-cycle cratonic quartzarenite produced by tropical weathering: the Nimar Sandstone (Lower Cretaceous), Narmada basin, India. Sediment Geol 71:23–32

    Article  Google Scholar 

  • Akhtar K, Khan MM, Ahmad AHM (1994) Petrofacies, provenance and tectonic setting of Nimar Sandstone (Lower Cretaceous), Rajpipla-Jobat area. J Geol Soc India 44:532–539

    Google Scholar 

  • Alam MM (2002) Generic provenance, tectonics and petrofacies evolution of sandstones, Jaisalmer Formation (Middle Jurassic), Rajasthan. J Geol Soc India 59:47–58

    Google Scholar 

  • Allen JRL (1980) Sand waves: a model of origin and internal structures. Sediment Geol 26:281–328

    Article  Google Scholar 

  • Auden JB (1933) Vindhyan sedimentation in the Son Valley. Geol Sur India Memoir 62:141–250

    Google Scholar 

  • Azmi RJ, Joshi D, Tiwari BN, Joshi MN, Mohan K, Srivastava SS (2007) Age of the Vindhyan Supergroup of Central India: an exposition of biochronology vs. geochronology. In: Sinha D (ed) Micropaleontology: application in stratigraphy and paleoceanography. Narosa Publishing House, New Delhi, pp 29–62 (for 2006)

    Google Scholar 

  • Azmi RJ (1998a) Discovery of Lower Cambrian small shelly fossils and brachiopods from the Lower Vindhyan of the Son Valley, Central India. J Geol Soc India 52:381–389

    Google Scholar 

  • Azmi RJ (1998b) Fossil discoveries in India. Science 282:627

    Article  Google Scholar 

  • Basilici G, Deluca PV, Oliveria E (2012) A depositional model for a wave-dominated open-coast tidal flat, based on analyses of the Cambrian–Ordovician Lagarto and Palmares formations, north-eastern Brazil. Sedimentology 59:1613–1639

    Article  Google Scholar 

  • Basu A (1985) Influence of climate and relief on composition of sands released at source areas. In: Zuffa GG (ed) Provenance of arenites. Reidel, Dordrecht, pp 1–18

    Chapter  Google Scholar 

  • Basu A, Young SW, Suttner LJ, James WC, Mack GH (1975) Re-evaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. J Sediment Petrol 45:873–882

    Google Scholar 

  • Bhattacharya A (1996) Recent advances in Vindhyan geology. Geol Soc India Memoir 36:331

    Google Scholar 

  • Bhattacharya A, Morad S (1993) Proterozoic braided ephemeral fluvial deposits: an example from the Dhandraul Sandstone Formation of the Kaimur Group, Son Valley, Central India. Sediment Geol 84:101–114

    Article  Google Scholar 

  • Bjorklund PP (2005) Stacked fluvial and tide dominated estuarine deposits in high frequency (fourth order) sequences of the Eocene Central Basin. Spits Bergen Sedimentology 52:391–428

    Article  Google Scholar 

  • Blatt H (1967) Original characteristics of clastic quartz grains. J Sediment Petrol 37:401–424

    Google Scholar 

  • Blatt H, Christie JM (1963) Undulatory extinction in quartz of igneous and metamorphic rocks and its significance in provenance studies of sedimentary rocks. J Sediment Res 33(3):559–579

    Google Scholar 

  • Boersma JR, Terwindt JHJ (1981) Neap-spring tide sequences of intertidal shoal deposits in a mesotidal estuary. Sedimentology 28:151–170

    Article  Google Scholar 

  • Boggs SJ (1968) Experimental study of rock fragments. J Sediment Petrol 38:1326–1339

    Google Scholar 

  • Boothroyd JC (1985) Tidal inlets and tidal deltas. In: Richard A, Jr D (eds) Coastal sedimentary environments, New York, Berlin, Tokyo, pp 445–531

  • Bose PK, Chakraborty PP (1994) Marine to fluvial transition: Proterozoic Upper Rewa Sandstone, Maihar, India. Sediment Geol 89:285–302

    Article  Google Scholar 

  • Bose PK, Sarkar S, Chakraborty S, Banerjee S (2001) Overview of Meso- to Neoproterozoic evolution of the Vindhyan basin, Central India (1.4-0.55 Ga). Sediment Geol 141:395–419

    Article  Google Scholar 

  • Bourgeois JA (1980) Transgressive shelf sequence exhibiting hummocky stratification: Sebastian sandstone (Upper Cretaceous) south western Oregon. J Sediment Petrol 50:681–702

    Article  Google Scholar 

  • Brasier MD (1998) From deep time to late arrivals. Nature 395:547–548

    Article  Google Scholar 

  • Breda A, Preto N (2011) Anatomy of an Upper Triassic continental to marginal-marine system: the mixed siliciclastic-carbonate Travenanzes Formation (Dolomites, Northern Italy). Sedimentology 58:1613–1647

    Article  Google Scholar 

  • Casshyap SM, Bhardwaj BD, Raza M, Singh A, Khan A (2001) Barrier inlet and associated facies of shore zone: an example from Khardeola Formation of Lower Vindhyan sequence in Chittorgarh, Rajasthan. J Geol Soc India 58:97–117

    Google Scholar 

  • Chakrabarti R, Basu AR, Chakrabarti A (2007) Trace element and Nd-isotopic evidence for sediment sources in the mid-Proterozoic Vindhyan Basin, Central India. Precamb Res 159:260–274

    Article  Google Scholar 

  • Chakraborty C (2006) Proterozoic intracontinental basin: the Vindhyan example. J Earth Syst Sci 115(1):3–22

    Article  Google Scholar 

  • Chakraborty C, Bhattacharya A (1996) The Vindhyan Basin: an overview in the light of current perspectives. Mem Geol Soc India 36:301–312

    Google Scholar 

  • Chakraborty C, Bose PK (1992) Rhythmic shelf storm beds: Proterozoic Kaimur Formation, India. Sediment Geol 77:259–268

    Article  Google Scholar 

  • Chakraborty PP, Sarkar S, Banerjee S, Das NG, Bose PK (1996) Volcaniclastics and their sedimentological bearing in Proterozoic Kaimur and Rewa Groups. Geol Soc India Memoir 36:59–75

    Google Scholar 

  • Chappell J, Woodroffe CD (1994) Microtidal estuaries. In: Carter RWE, Woodroffe CD (eds) Coastal evolution: Late Quaternary shoreline morphodynamics. Cambridge Univ. press, Cambridge, pp 187–218

    Google Scholar 

  • Chaudhuri AK, Mukhopadhyay J, Deb SP, Chanda SK (1999) The Neoproterozoic cratonic successions of Peninsular India. Gond Res 2:213–225

    Article  Google Scholar 

  • Chaudhury AK, Gopalan K, Sastry CA (1984) Present status of the geochronology of the Precambrian rocks of Rajasthan. Tectonophysics 105:131–140

    Article  Google Scholar 

  • Cheel RJ, Leckie DA (1993) Hummocky cross-stratification. Sedim Review 1:103–122

    Article  Google Scholar 

  • Clifton HE, Hunter RE, Phillips RL (1971) Depositional structures and processes in the non-barred high-energy nearshore. J Sediment Petrol 41:651–670

    Google Scholar 

  • Cooper JAG (2002) The role of extreme floods in estuary-coastal behavior: contrasts between tides dominated micro-tidal estuaries. Sediment Geol 150:123–137

    Article  Google Scholar 

  • Corcoran PL, Mueller WU, Chown EH (1998) Climatic and tectonic influences on fan deltas and wave to tide-controlled shoreface deposits, evidence from the Archean Keskarrah Formation, Slave Province; Canada. Sed Geology 120:125–152

    Article  Google Scholar 

  • Cox R, Lowe DR (1995) A conceptual review of regional scale controls on the compositions of clastic sediments and the co-evolution of continental blocks and their sedimentary cover. J Sediment Res 65:1–12

    Article  Google Scholar 

  • Crawford AR, Compston W (1970) The age of Vindhyan system of peninsular India. Quart J Geol Soc London 125:351–371

    Article  Google Scholar 

  • Dalrymple RW, Zaitlin BA, Boyd R (1992) Estuarine facies models: conceptual basis and stratigraphic implications. J Sediment Petrol 62:1130–1146

    Article  Google Scholar 

  • Davis RA (1985) Beach and nearshore zone. In: Richard A, Jr D (eds) Coastal sedimentary environments. Springer Verlag, New York, pp 379–444

    Chapter  Google Scholar 

  • Decelles PG (1987) Variable preservation of Middle Tertiary, coarse-grained, nearshore to outer self storm deposit in southern California. J Sedim Petrol 57(2):250–264

    Google Scholar 

  • Dickinson WR (1985) Interpreting provenance relations from detrital modes of sandstones. In: Zuffa GG (ed) Provenance of arenites. D. Reidel Publ. Co., New York, pp 333–361

    Chapter  Google Scholar 

  • Dickinson WR, Suczek CA (1979) Plate tectonics and sandstone compositions. Am Assoc Pet Geol Bull 63:2164–2182

    Google Scholar 

  • Einsele G (1992) Sedimentary basins, vol 94. Springer-Verlag, Berlin, pp. 124–269

    Book  Google Scholar 

  • Evans G (1965) Intertidal flat sediments and their environments of deposition in the Wash. J Geol Soc Lond 121:209–241

    Article  Google Scholar 

  • Folk RL (1980) Petrology of sedimentary rocks. Texas, Hemphills Publishing Co., Austin, p. 182

    Google Scholar 

  • Ghazi S, Mountney NP (2011) Petrography and provenance of the Early Permian Fluvial Warchha Sandstone, Salt Range, Pakistan. Sediment Geol 233:88–110

    Article  Google Scholar 

  • Ghose NC, Mukherjee D (2000) Chotanagpur gneiss granulite complex, Eastern India—a kaleidoscope of global events. In: Trivedi AN, Sarkar BC, Ghose NC, Dhar YR (eds) Geology and mineral resources of Bihar and Jharkhand. Platinum Jubilee Commemoration Volume. Indian School of Mines, Dhanbad. Institute of Geo exploration and Environment, Patna, pp 33–58

  • Ghosh SK (1991) Source rock characteristics of the Late Proterozoic Nagthat Formation, NW Kumaun Lesser Himalaya, India. J Geol Soc India 38:485–495

    Google Scholar 

  • Ghosh SK, Kumar R (2000) Petrography of Neogene Siwalik Sandstone of the Himalayan Foreland Basin, Garhwal Himalaya: implication for source-area tectonics and climate. J Geol Soc India 55:1–15

    Google Scholar 

  • Graham SA, Ingersoll RV, Dickinson WR (1976) Common provenance for lithic grains in carboniferous sandstones from Ouachita Mountains and Black Warrior basin. J Sediment Petrol 46:620–632

    Google Scholar 

  • Gregory LC, Meert JG, Pradhan V, Pandit MK, Tamrat E, Malone SJ (2006) A paleomagnetic and geochronologic study of the Majhgawan kimberlite, India: implications for the age of the Upper Vindhyan Supergroup. Precamb Res 149:65–75

    Article  Google Scholar 

  • Gupta S, Jain KC, Srivastava VC, Mehrotra RD (2003) Depositional environment and tectonism during the sedimentation of the Semri and Kaimur Groups of rocks, Vindhyan Basin. J Palaeontol Soc India 48:181–190

    Google Scholar 

  • Hari Narain (1987) Geophysical constraints on the evolution of Purana Basins of India with special reference to Cuddapah, Godavari and Vindhyan basins. In: Purana Basins of Peninsular India. Geol Soc India Bangalore, Memoir 6:5–32

  • Harms JC, Southard JB, Walker RG (1982) Structures and sequences in clastic rocks. Soc Econ Palaeontol Mineral Short Course Notes 9:18–51

    Google Scholar 

  • Heap AD, Bryce S, Ryan DA (2004) Facies evolution of Holocene estuaries and deltas: a large sample statistical study from Australia. Sediment Geol 168:1–17

    Article  Google Scholar 

  • Hori K, Saito Y, Zhao Q, Cheng X, Wang P, Sato Y, Li C (2001) Sedimentary facies of tide-dominated paleochanging (Yangtze) estuary during the last transgression. Marine Geol 177:331–351

    Article  Google Scholar 

  • Hunter RE, Clifton HE, Phillips RL (1979) Depositional processes sedimentary structures and predicted vertical sequences in barred nearshore systems, Southern Oregon coast. J Sediment Petrol 49:711–726

    Google Scholar 

  • Ingersoll RV, Bullard TF, Ford RL, Grimm JP, Pickle JD, Sares SW (1984) The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point counting method. J Sediment Petrol 54:103–106

    Google Scholar 

  • Ingersoll RV, Suczek CA (1979) Petrology and provenance of Neogene sand from Nicobar and Bengala fans, DSDP sites 211 and 218. J Sediment Petrol 49:1217–1228

    Google Scholar 

  • Jafar SA, Akhtar K, Srivastava VK (1966) Vindhyan paleocurrents and their bearing on the northern limit of the Vindhyan sedimentation—a preliminary note. Bull Geol Soc India 3:82–84

    Google Scholar 

  • Jalal P, Ghosh SK (2012) Provenance of the Late Neogene Siwalik sandstone, Kumaun Himalayan Foreland Basin: constraints from the metamorphic rank and index of detrital rock fragments. J Earth Syst Sci 121:781–792

    Article  Google Scholar 

  • Kerr RA (1998a) Fossils challenge age of billion-years-old animals. Science 282:601–602

    Article  Google Scholar 

  • Khalifa MA, Soliman HE, Wanes HA (2006) The Cambrian Araba Formation in Northeastern Egypt: facies and depositional environments. J Asian Ear Sci 20:1–12

    Google Scholar 

  • Klein GD (1967) Paleocurrent analysis in relation to modern marine sediment dispersal patterns. Bull Am Assoc Pet Geol 51:182–190

    Google Scholar 

  • Klein GD (1985) Intertidal flats and intertidal sand bodies. In: Richard A, Davis Jr (Eds) Coastal sedimentary environments. New York, Berlin, Tokyo, pp 187–224

  • Kumar A, Heaman LM, Manikyamba C (2007) Mesoproterozoic kimberlites in South India: a possible link to ~1.1 Ga global magmatism. Precamb Res 154:192–204

    Article  Google Scholar 

  • Kumar A, Kumari P, Dayal AM, Murthy DSN, Gopalan K (1993) Rb-Sr ages of Proterozoic kimberlites of India: evidence for contemporaneous emplacements. Precamb Res 62:227–237

    Article  Google Scholar 

  • Ladipo KO (1988) Example of tidal current periodicities from an Upper Cretaceous Sandstone succession (Anambra Basin, S.E. Nigeria). In: Boer PL, Gelder AN, Nio AD (eds) Tide influenced sedimentary environment and facies sedimentology and petroleum geology. Reidel, Dordrecht, pp 333–358

    Chapter  Google Scholar 

  • Leckie DA, Singh C (1991) Estuarine deposits of the Albian Paddy Member (Peace River Formation) and lowermost Shaftsbury Formation. Alberta, Canada. J Sediment Petrol 61:825–849

    Google Scholar 

  • Maithy PK (1981) Vindhyan micro-biota from the Suket Shales, Rampura, H.P. Misc Publ Geol Surv India 50:183–192

    Google Scholar 

  • Maithy PK, Babu R (1993) Occurrence of endosporulating cynobacteria in the Lower Bhander Limestone Formation, Bhander Group, exposed around Narsinghgarh, Madhya Pradesh (abstract). In: Group discussion on Vindhyans. Department of Geological Sciences, Jadavpur University, Calcutta, p 32

    Google Scholar 

  • Malviya VP, Arima M, Pati JK, Kaneko Y (2006) Petrology and geochemistry of metamorphosed basaltic pillow lava and basaltic komatiite in Mauranipur area: subduction related volcanism in Archean Bundelkhand Craton. Central India; J Min Petrol Science 101:199–217

    Article  Google Scholar 

  • Mange MA, Otvos EG (2005) Gulf coastal plain evolution in West Louisiana: heavy mineral provenance and Pleistocene alluvial chronology. Sediment Geol 182:29–57

    Article  Google Scholar 

  • Marsaglia KM, Ingersoll RV (1992) Compositional trends in arc-related, deep-marine sand and sandstone: a reassessment of magmatic-arc provenance. Geol Soc Am Bull 104:1637–1649

    Article  Google Scholar 

  • McBirney AR (1983) Igneous petrology. Freeman, Cooper, San Francisco, p. 504

    Google Scholar 

  • Mishra M, Sen S (2010) Geochemical signatures of Mesoproterozoic siliciclastic rocks of Kaimur Group, Vindhyan Supergroup, Central India. Chinese J Geochem 29(1):21–31

  • Mishra M, Sen S (2012) Provenance, tectonic setting and source-area weathering of Mesoproterozoic Kaimur Group, Vindhyan Supergroup, Central India. Geol Acta 10:283–293

    Google Scholar 

  • Misra RC (1969) The Vindhyan system. Proc Indian Sci Cong., 56th Session, Part 2, pp 111–142

  • Mowbray TD, Visser MJ (1984) Reactivation surfaces in subtidal channel deposits, Oosterschelde, Southwest Netherlands. J Sediment Petrol 54:811–824

    Google Scholar 

  • Mulrennan ME, Woodroffe CD (1998) Holocene development of the Mary River Plains, Northern territory, Australia. Sediment Geol 8:565–579

    Google Scholar 

  • Naqvi SM, Rogers JJW (1987) Precambrian geology of India. Oxford University Press, Oxford, pp 223

  • Paikaray S, Banerjee S, Mukherji S (2008) Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup, implications on provenance, tectonics and paleoweathering. J Asian Earth Sci 32:34–48

    Article  Google Scholar 

  • Palomares M, Arribas J (1993) Modern stream sands from compound crystalline sources: composition and sand generation index. In: Johnsson MJ, Basu A (eds) Processes controlling the composition of clastic sediments. Geol Soc Am Special Papers 284:313–322

    Article  Google Scholar 

  • Patra A, Singh BP, Srivastava VK (2014) Provenance of the late Paleocene Sandstones of the Jaisalmer Basin, Western India. J Geol Soc India 83:657–664

    Article  Google Scholar 

  • Paul DK, Rex DC, Harris PG (1975) Chemical characteristics and K-Ar ages of Indian kimberlites. Geol Soc Am Bull 86:364–366

    Article  Google Scholar 

  • Pradhan VR, Meert JG, Pandit MK, Kamenov G, Mondal MEA (2012) Paleomagnetic and geochronological studies of the mac dyke swarms of Bundelkhand craton, Central India: implications for the tectonic evolution and paleogeographic reconstructions. Precamb Res 198–199:51–76

    Article  Google Scholar 

  • Prakash R, Dalela IK (1982) Stratigraphy of the Vindhyan in Uttar Pradesh: a brief review. In: Valdiya KS, Bhatia SB, Gaur VK (eds) Geology of Vindhyanchal. Hindustan Publishing Corporation, Delhi, pp 55–79

    Google Scholar 

  • Prasad B, Verma KK (1991) Vindhyan basin: a review. In: Tandon SK, Pant CC, Casshyap SM (eds) Sedimentary basins of India, 50–62

  • Radhakrishna BP (1987) Purana basins of Peninsular India (Middle to Late Proterozoic). Geol Soc India Bangalore, Memoir 6:518

    Google Scholar 

  • Raha PK, Sastry MVA (1982) Stromatolites and Precambrian stratigraphy in India. Precamb Res 18:292–318

    Article  Google Scholar 

  • Shankar R (1993) Structural and geomorphological evolution of ‘SONATA’ Rift Zone in Central India in response to Himalayan Uplift. J Paleontol Soc India 38:139–160

    Google Scholar 

  • Ray JS, Chakraborty C (2006) Vindhyan geology status and perspectives. Spec Issue J Earth Syst Sci 115(1):183

    Google Scholar 

  • Raza M, Jafri SH, Khan MS (1993) Geodynamic evolution of Indian Shield during Proterozoic: evidence from mafic volcanic rocks. J Geol Soc India 41:455–469

    Google Scholar 

  • Reading HE (1978) Sedimentary environments and facies. Blackwell Scientific Pub, London, p. 557

    Google Scholar 

  • Reading HG, Levell BK (1996) Controls on the sedimentary record. In: Reading HG (ed) Sedimentary environments: processes, facies and stratigraphy. Blackwell Science, Oxford, pp 5–36

    Google Scholar 

  • Reineck HE, Singh IB (1980) Depositional sedimentary environment. Springer-Verlag, New York, p. 549

    Book  Google Scholar 

  • Sarkar A, Sarkar G, Paul DK, Mil-RA ND (1990) Precambrian geochronology of the Central Indian Shield—a review. Spec Publ Geol Surv India 28:453–482

    Google Scholar 

  • Sastry MVA, Moitra AK (1984) Vindhyan stratigraphy—a review. Geol Sur India Memoir 116:109–148

    Google Scholar 

  • Seilacher A, Bose PK, Pflüger F (1998) Triploblastic animals more than 1 billion years age: trace fossil evidence from India. Science 282:80–83

    Article  Google Scholar 

  • Sen S (2010) Geochemistry and provenance of the siliciclastics from Kaimur Group, Vindhyan Supergroup, Mirzapur and Sonbhadra Districts, Uttar Pradesh, India. Ph.D. thesis, Banaras Hindu University, Varanasi, 221 p

  • Sen S, Meenal M, Sarbani PD (2014) Petrological study of the Kaimur Group sediments, Vindhyan Supergroup, Central India: implications for provenance and tectonics. Geosci J 18(3):307–324

    Article  Google Scholar 

  • Shukla UK, Pant CC (1996) Facies analysis of the Late Proterozoic Nagthat Formation, Nainital Hills, Kumaon Lesser Himalaya. J Geol Soc India 47:431–445

    Google Scholar 

  • Singh BP (1996) Murree sedimentation in the northwestern Himalaya. Geol Surv India Spec Publ 21:157–164

    Google Scholar 

  • Singh BP (2013) Evolution of the Paleogene succession of the western Himalayan foreland basin. Geosci Front 4:199–212

    Article  Google Scholar 

  • Singh BP, Andotra DS, Kumar R (2000) Provenance of the lower Tertiary mudrocks in the Jammu Sub-Himalayan Zone, Jammu and Kashmir State (India), NW Himalaya and its tectonic implications. J Geosci 4(1):1–9

    Article  Google Scholar 

  • Singh BP, Pawar JS, Karlupia SK (2004) Dense mineral data from the northwestern Himalayan foreland sedimentary rocks and recent river sediments: evaluation of the hinterland. J Asian Earth Sci 23:25–35

    Article  Google Scholar 

  • Singh BP, Singh H (1995) Evidence of tidal influence in the Murree Group of rocks of the Jammu Himalaya, India. In: Flemming BW, Bartholoma A (eds.) Tidal signatures in modern and ancient sediments. Int Ass Sedimentol, Spec Pub 24:343–351

    Google Scholar 

  • Soni MK, Chakraborty S, Jain VK (1987) Vindhyan super group—a review. Geol Soc Indian 6:87–138

    Google Scholar 

  • Srivastava RK, Mehrotra MN (1981) Sedimentological studies of Kaimur sandstones, Central Son Valley region, India. Geol Soc India Misc Publ 50:109–120

    Google Scholar 

  • Srivastava SK, Pandey N (2011) Search for provenance of Oligocene Barail Sandstone in and around Jotsoma, Kohima, Nagaland. J Geol Soc India 77:433–442

    Article  Google Scholar 

  • Sudgen TJ, Deb M, Windley BE (1990) Tectonic setting of mineralization in the Proterozoic Aravalli-Delhi orogenic belt, NW India. In: Developments in Precambrian geology, vol 8. Elsevier, Amsterdam, pp 367–390

    Google Scholar 

  • Sultan L, Bjorklund PP (2006) Depositional environments at a Paleoproterozoic continental margin, Vastervik Basin, SE Sweden. Precamb Res 145:243–271

    Article  Google Scholar 

  • Suttner LJ, Basu A, Mack GH (1981) Climate and the origin of quartz arenites. J Sediment Petrol 51:1235–1246

    Google Scholar 

  • Thorez J, Geomaere E, Dreesen R (1988) Tide and wave influenced depositional environments in the Psamites Du Controz (Upper Famennian in Belgium). In: De Boer PL, Van Gelder A, Nio SD (eds) Tide influenced sedimentary environments and facies. Reidel, Dordrecht, pp 389–415

    Chapter  Google Scholar 

  • Trevena AS, Nash WP (1981) An electron microprobe study of detrital feldspar. J Sediment Petrol 51:137–150

    Google Scholar 

  • Tucker ME (1998) Sedimentary rocks in the field, 2nd edn. Wiley, New York, p. 152

    Google Scholar 

  • Tugarinov AI, Shanin LL, Kazakov GA, Araicalyants MM (1965) On the glauconite ages of the Vindhyan System (India). Geokhimiya 6:652–660

    Google Scholar 

  • Van Stratten LMJU (1954) Composition and structure of recent marine sediments in the Netherlands. Leidse Geology Meded 19:1–110

    Google Scholar 

  • Willis BJ, Bhattacharya JP, Gabel SL, White CD (1999) Architecture of a tide-influenced river delta in Frontier Formation of Central Wyoming, USA. Sedimentology 46:667–688

    Article  Google Scholar 

  • Woodroffe CD, Chappell J, Thom BG, Wallensky E (1989) Depositional model of a macro tidal estuary and floodplain, south Alligator River, northern Australia. Sediment Geol 36:737–756

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Chairman, Department of Geology, Aligarh Muslim University, Aligarh for providing all necessary facilities for research work. Financial assistance for the fieldwork through the “Student Amenities” fund provided by UGC is thankfully acknowledged. We also gratefully acknowledge the critical and constructive suggestions offered by two anonymous referees, which improved the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Quasim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quasim, M.A., Ahmad, A.H.M. & Ghosh, S.K. Depositional environment and tectono-provenance of Upper Kaimur Group sandstones, Son Valley, Central India. Arab J Geosci 10, 4 (2017). https://doi.org/10.1007/s12517-016-2783-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-016-2783-1

Keywords

Navigation