Skip to main content
Log in

Geochemistry of stratabound scheelite mineralisation and associated calc-silicate rocks from Chitral, NE Hindu Kush, Pakistan

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Tungsten mineralisation in the NE Hindu Kush terrain occurs 8 km NW of the Tirich Boundary Zone suture between Karakoram and Eastern Hindu Kush. Scheelite occurs mainly in calc-silicate rocks and subordinately in tourmalinites associated with metasediments at Miniki Gol, Chitral. The investigated area underwent two phases of deformation and was metamorphosed up to sillimanite grade, followed by the emplacement of leucogranite and hydrothermal activity. The mineral assemblages of the calc-silicate rocks, comprising clinozoisite, quartz, calcic-amphibole, plagioclase, chlorite, biotite, calcite, sphene, garnet and scheelite, clearly express a skarn type environment. The coexistence of the scheelite grains with clinozoisite and the occurrence of anomalous values of ZrO2 and Ta2O5 in the scheelite grains imply a genetic link between the scheelite mineralisation and post-magmatic hydrothermal fluids. The enrichment of Zr, Hf, Be, Sn, W, Th, U, Ga, Nb, F and Y along with total REE in the scheelite-bearing calc-silicate rocks compared with the associated metasediments assigns that the rocks at Miniki Gol have undergone a pronounced hydrothermal activity. Strong positive correlations between Zr, Hf, Nb, Y, Ta, F and REE, and the mobility of REE are consistent with this consideration. Aqueous fluid inclusions in the scheelite-bearing calc-silicate rocks display very low salinity, suggesting a mixing of magmatic fluids with meteoric water. The formation of intergrown scheelite and clinozoisite indicates a high pH and CO2-deficient fluid. The tungsten mineralization may be related to the Miniki Gol leucogranite which occurs at a distance of only 400 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Absar A (1991) Hydrothermal epidote—an indicator of temperature and fluid composition. J Geol Soc India 38:625–628

    Google Scholar 

  • Asrarullah (1982) Investigations for tungsten in Pakistan. In: Hepworth JV (eds) Tungst. Geol. Symp. Jiangxi. China, (ESCAP RMRDC). Bandung, Indonesia, pp 9–13

  • Benard F, Moutou P, Pichavant M (1985) Phase relations of tourmaline leucogranites and the significance of tourmaline in silicic magmas. J Geol 93:271–291

    Article  Google Scholar 

  • Beran A, God R, Gotzinger M, Zemann J (1985) A scheelite mineralization in calc-silicate rocks of the Moldanubicum (Bohemian Massif) in Austria. Mineral Deposits 20:16–22

    Article  Google Scholar 

  • Boissavy-Vinau M, Roger G (1980) The TiO2/Ta ratio as an indicator of the degree of differentiation of tin granites. Mineral Deposits 15:231–236

    Article  Google Scholar 

  • Buchroithner MF (1980) An outline of the geology of the Afghan Pamirs. Tectonophysics 62:13–95

    Article  Google Scholar 

  • Christensen OD, Capuano RA, Moore JN (1983) Trace-element distribution in an active hydrothermal system, Roosevelt hot springs thermal area, Utah. J Volcanol Geotherm Res 16:99–129

    Article  Google Scholar 

  • Cullers RL, Yeh LT, Chaudhuri S, Guidotti CV (1974) Rare earth elements in Silurian pelitic schist from NW Maine. Geochim Cosmochim Acta 38:389–400

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1982) Rock-forming minerals, 1A, Orthosilicates, 2nd edn, London, pp 919

  • Deer WA, Howie RA, Zussman J (2013) An introduction to the rock-forming minerals. Min Soc Lond :498

  • Desio A (1966) The Devonian sequence in the Mastuj valley (Chitral, NW Pakistan). Riv Ital Paleontol Stratigr 72:293–320

    Google Scholar 

  • Faisal S, Larson KP, King J, Cottle JM (2015) Rifting, subduction and collisional records from pluton petrogenesis and geochronology in the Hindu Kush NW Pakistan. Gondwana Res. doi:10.1016/j.gr.2015.05.014

    Google Scholar 

  • Gaetani M, Leven E (1993) Permian stratigraphy and fusulinids from Rosh Gol (Chitral, E Hindu Kush). Riv Ital Paleontol Stratigr 99:307–326

    Google Scholar 

  • Giere R (1990) Hydrothermal mobility of Ti, Zr and REE: examples from the Bergell and Adamello contact aureoles (Italy). T Nov. 2:60–67

  • Giuliani G, Li YD, Sheng TF (1988) Fluid inclusion study of Xihuashan tungsten deposit in the southern Jiangxi province, China. Mineral Deposits 23:24–33

    Article  Google Scholar 

  • Grauch RI (1989) Rare earth elements in metamorphic rocks. In: Lipin BR, McKay GA (eds) Geochemistry and mineralogy of rare earth element. Min Soc Am Rev Min, vol 21. pp 147–167

  • Heuberger S, Schaltegger U, Burg J-P, Villa IM, Frank M, Dawood H, Hussain, Zanchi A (2007) Age and isotopic constraints on magmatism along the Karakoram-Kohistan suture zone, NW Pakistan: evidence for subduction and continued convergence after India-Asia collision. Swiss J Geosci 100:85–107. doi:10.1007/s00015-007-1203-7

    Article  Google Scholar 

  • Hildebrand PR, Noble SR, Searle MP, Waters DJ, Parrish RR (2001) Old origin for an active mountain range: geology and geochronology of the eastern Hindu Kush, Pakistan. Geol Soc Am Bull 113:625–639

    Article  Google Scholar 

  • Hildebrand PR, Searle MP, Shakirullah Zafarali K, van Heijst HJ (2000) Geological evolution of the Hindu Kush, NW Pakistan: active margin to continent-continent collision zone. In: Khan M et al (eds) Tectonics of the Nanga Parbat syntaxis and the western Himalaya: Geol Soc London, Spec Pub. vol 170, pp 277–293

  • Hilderband PR, Noble SR, Searle MP, Parrish RR, Shakirullah (1998) Tectonic significance of 24 Ma crustal melting in the eastern Hindu Kush, Palistan. Geology 26:871–874

    Article  Google Scholar 

  • Hosking KFG (1982) A general review of the occurrence of tungsten in the world. In: Hepworth JV, Zhang YH (eds) Tungst. Geol. Symp. Jiangxi. China, (ESCAP RMRDC). Bandung, Indonesia, pp 59–86

  • Keppler H, Wyllie PJ (1991) Partitioning of Cu, Sn, Mo, W, U and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF. Contrib Mineral Petrol 109:139–150

    Article  Google Scholar 

  • Krauskopf KB (1967) Introduction to geochemistry. McGraw-Hill, p 721

  • Le Fort P, Debon F, Sonet J (1980) The “lesser Himalayan” cordierite granite belt, typology and age of the pluton of Mansehra, Pakistan. Geol Bull Univ Peshawar Spec Issue 13:51–61

    Google Scholar 

  • Leake RC, Fletcher CJN, Haslam HW, Khan B, Shakirullah (1989) Origin and tectonic setting of stratabound tungsten mineralisation within the Hindu Kush of Pakistan. J Geol Soc Lond 146:1003–1016

    Article  Google Scholar 

  • Lindstrom RM, Anderson DL (1985) Analytical neutron-capture gamma-ray spectroscopy: status and prospects. In: Ramau, S. (eds), Capture Gamma-ray Spectroscopy and Related Topics. Am. Inst. Physics, New York, p 810

  • Linnen RL, Williams-Jones AE (1993) Mineralogical constraints on magmatic and hydrothermal Sn-W-Ta-Nb mineralization at the Nong Sua aplite-pegmatite, Thailand. Eur J Mineral 5:721–736

    Article  Google Scholar 

  • Linnen RL, Lichtervelde MV, Cerny P (2012) Granitic pegmatites as sources of strategic metals. Elements 8:275–280

    Article  Google Scholar 

  • Lottermoser BG (1989a) Rare-earth element study of exhalites within the Willyama Supergroup, Broken Hill Block, Australia. Mineral Deposits 24:92–99

    Article  Google Scholar 

  • Lottermoser BG (1989b) Rare-earth element behaviour associated with stratabound scheelite mineralisation (Broken Hill, Australia). Chem Geol 78:119–134

    Article  Google Scholar 

  • Lottermoser BG (1992) Rare earth elements and hydrothermal ore formation processes. Ore Geol Rev 7:25–41

    Article  Google Scholar 

  • Maucher A (1976) The stratabound cinnabar-stibnite-scheelite deposits (discussed with examples from the Mediterranean region). In: Wolf KH (Eds) Handbook of Plimer IR (1984). The role of fluorine in the submarine exhalative systems with special reference to Broken Hill, Australia. Mineral Deposits, vol 19. pp 19–25

  • Neinavaie H, Thalmann F, Ataii B, Beran A (1989) Wolframite- and scheelite-bearing carbonate rocks of the Nock mountains, Austria: a new type of tungsten mineralisation in the eastern Alps. Mineral Deposits 24:14–18

    Article  Google Scholar 

  • Niedermayr G, Schroll E (1983) The tungsten distribution in rocks of the Western Hohe Tauern. In: Schneider HJ (ed) Mineral deposits of the Alps and of the Alpine Epoch in Europe. Springer-Verlag, Berlin, pp. 240–248

    Chapter  Google Scholar 

  • Pascoe EH (1924) General report of the Geological Survey of India for the year 1923. India Geol Sur Rec 55: part 1

  • Plimer IR (1984) The role of fluorine in the submarine exhalative systems with special reference to Broken Hill, Australia. Mineral Deposits 19:19–25

    Article  Google Scholar 

  • Plimer IR (1986) Tourmalinites from the Golden Dyke Dome, Northern Australia. Mineral Deposits 21:263–270

    Article  Google Scholar 

  • Plimer IR (1987) The association of tourmalinite with stratiform scheelite deposits. Mineral Deposits 22:282–291

    Article  Google Scholar 

  • Pudsey CJ, Coward MP, Luff IW, Shackleton RM, Windley BF, Jan MQ (1985) Collision zone between the Kohistan arc and the Asian plate in NW Pakistan. Trans R Soc Edinb 76:463–479

    Article  Google Scholar 

  • Raith JG, Prochaska W (1995) Tungsten deposits in the Wolfram schist, Namaqualand, South Africa: strata-bound versus granite-related genetic concepts. Econ Geol 90:1934–1954

    Article  Google Scholar 

  • Robb LJ (2005) Introduction to ore-forming processes. Black Sci Ltd, pp 373

  • Rubin JN, Henry CD, Price JG (1993) The mobility of zirconium and other “immobile” elements during hydrothermal alteration. Chem Geol 110:29–47

    Article  Google Scholar 

  • Siddiqui RH, Jan MQ, Khan MA (2012) Petrology of Late Cretaceous lave flows from a Ceno-Tethyan island arc: the Raskoh arc, Balochistan, Pakistan. Asian J Earth Sci 59:24–38

    Article  Google Scholar 

  • Siddiqui RH, Khan Z, Hussain SA (1986) Xenothermal alteration and tungsten mineralization in Saindak area, Baluchistan, Pakistan. Act Min Pak 2:74–77

    Google Scholar 

  • Slack JF, Herriman N, Barnes RG, Plimer IR (1984) Stratiform tourmalinites in metamorphic terranes and their geologic significance. Geology 12:713–716

    Article  Google Scholar 

  • Sonnet P, Verkaeren J, Crevola G (1985) Scheelite bearing calc-silicate gneisses in the Provence crystalline basement (Var, France). Bull Mineral 108:377–390

    Google Scholar 

  • Spooner ETC (1981) Fluid inclusion studies of hydrothermal ore deposits. In: Hollister LS, Crawford ML (eds) Short course in fluid inclusion: App Pet 6, Min Ass Canada, pp 209–240

  • Stilling A, Cerny P, Vanstone PJ (2006) The Tanco pegmatite at Bernic Lake, Manitoba, XVI, zonal and bulk compositions and their petrogenetic significance. Can Mineral 44:599–623

    Article  Google Scholar 

  • Taylor SR (1965) The application of trace element data to problems in petrology. Phys Chem Earth 6:135–213

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The Continental crust: its composition and evolution. Black Sci Pub Oxford, p 312

  • Taylor RP, Ikingura JR, Fallick AE, Yiming H, Watkinson DH (1992) Stable isotope compositions of tourmalinites from granites and related hydrothermal rocks of the Karagwe-Ankolean belt, Northwest Tanzania. Chem Geol 94:215–227

    Article  Google Scholar 

  • Thalhammer OAR, Stumpfl EF, Jahoda R (1989) The Mittersill scheelite deposit, Austria. Econ Geol 51:1153–1171

    Article  Google Scholar 

  • Tukiainen T (1988) Niobium-tantalum mineralisation in the Motzfeldt Centre of the Igaliko nepheline syenite complex, South Greenland. In: Boissonnas J, Omenetto P (eds) Mineral deposits within the European Community. Springer-Verlag, Berlin, pp. 230–246

    Chapter  Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth crust. Geol Soc Am Bull 72:175–192

    Article  Google Scholar 

  • Van de Haar AJ, Vriend SP, van Gaans PFM (1993) Hydrothermal alteration of the Beira schist around the W-Sn specialised Regoufe granite, NW Portgal. J Geochem Explor 46:335–347

    Article  Google Scholar 

  • Wood SA (1990) The aqueous geochemistry of the rare earth elements and yttrium: 2. Theoretical predictions of speciation in hydrothermal solutions to 350 °C at saturation water vapor pressure. Chem Geol 88:99–125

    Article  Google Scholar 

  • Zahid M (1996) Genesis of stratabound scheelite and stratiform Pb-Zn mineralisation Chitral, Northern Pakistan, and its comparison with S-WEngland tin-tungsten deposits. Unpubl PhD thesis, University of Leicester, UK

  • Zahid M, Arif M, Moon CJ (2013) Petrogenetic implications of the mineral-chemical characteristics of scheelite and associated phases from Miniki Gol (Chitral), NW Pakistan. Geosci J 17(4):403–416

    Article  Google Scholar 

  • Zanchi A, Gaetani M (2011) The geology of the Karakoram range, Pakistan: the new 1:100,000 geological map of Central-Western Karakoram. Ital J Geosci (Boll So Geol It) 130(2). doi: 10.3301/IJG.2010.26

  • Zanchi A, Poli S, Fumagalli M, Gaetani M (2000) Mantle exhumation along the Tirich Mir fault zone, NW Pakistan: pre-mid-Cretaceous accretion of the Karakoram terrane to the Asian margin. In: Khan MA et al (eds) Tectonics of the Nanga Parbat syntaxis and the western Himalaya: Geol Soc London, Special Publication, vol 170, pp 277–293

Download references

Acknowledgments

The Association of the Commonwealth Universities in UK financed this study. Mr. Rob Kelly helped in preparing samples and Mr. Nick Marsh facilitated the performance of analytical work at the Department of Geology, University of Leicester, UK. Dr. David Alderton helped in the microthermometric analyses of the fluid inclusions at Royal Holloway and Bedford New College, University of London. We are also thankful to A. Zanchi and other reviewers for critically reviewing the manuscript and offering useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Zahid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahid, M., Jan, M.Q. & Moon, C.J. Geochemistry of stratabound scheelite mineralisation and associated calc-silicate rocks from Chitral, NE Hindu Kush, Pakistan. Arab J Geosci 9, 620 (2016). https://doi.org/10.1007/s12517-016-2637-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-016-2637-x

Keywords

Navigation