Skip to main content

Advertisement

Log in

Detrital mode and whole-rock geochemistry of the Miocene-Pliocene fluvial succession, Pishin Belt, Pakistan: implications on provenance and source area weathering in peripheral foreland basins

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Detrital mode and geochemical composition of sandstones and mudstones of the Miocene Dasht Murgha Group (DMG) and Pliocene Malthanai Formation (MF) of the Pishin Belt, northwestern Pakistan, have been examined to identify their provenance and source area weathering. Sandstones of the Dasht Murgha Group and Malthanai Formation are lithic to sublitharenites, rich in quartz, and metamorphic and sedimentary lithic fragments, indicating a recycled orogenic source. LmLvLs plots show that the Dasht Murgha Group is rich in sedimentary and metamorphic lithic fragments (Lm35Lv18Ls47), while samples of the Malthanai Formation are overwhelmingly rich in sedimentary fragments (Lm14Lv10Ls76). Eocene Nisai Formation and Oligocene Khojak Formation within the Pishin Belt were mainly providing the sedimentary/metasedimentary detritus. High content of monocrystalline quartz (DMG 28.21 %; MF 30.7) and higher SiO2/Al2O3 ratios in sandstones (DMG 9.86; MF 11.98) also indicate high maturity of sandstones due to recycling of source terrain in collision orogens. High Cr/Ni (DMG 5.23; MF 6.17) and moderate Cr/V (DMG 3.96; MF 3.88) ratios suggest significant contributions from mafic and ultramafic detritus derived from Muslim Bagh-Zhob Ophiolite. Malthanai Formation has higher CIA and CIW values (68.96 and 77.53) than Dasht Murgha Group (63.87 and 70.93); however, they both indicate low to moderate weathering intensities. Dasht Murgha Group and Malthanai Formation have higher ICV values which indicate abundance of aluminous silicates, hence, showing moderate weathering of the source area. In A-CN-K diagrams, the samples make linear trend towards illite which suggests that the sediments were derived from a tectonically active source going through non-steady-state weathering, where the detritus has been derived from different zones of weathering profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig 14

Similar content being viewed by others

References

  • Ahmed Z (1996) Nd- and Sr-isotopic constraints and geochemistry of the Bela Ophiolite-Melange complex, Pakistan. Int Geol Rev 38:304–319

    Article  Google Scholar 

  • Ahmad R, Afzal J (2012) Sequence stratigraphy of the mixed carbonate-siliciclastic system of the Eocene Nisai Formation, Pishin Basin: distribution of source rocks and reservoir facies. Search and Discovery Article #10406, AAPG.

  • Allemann F (1979) Time of emplacement of the Zhob Valley Ophiolites and Bela Ophiolites, Baluchistan (preliminary report). In: Farah A, DeJong KA (eds) Geodynamics of Pakistan. Geological Survey of Pakistan, Quetta, pp. 215–242

    Google Scholar 

  • Armstrong-Altrin JS, Lee YI, Verma SP, Ramasamy S (2004) Geochemistry of sandstones from the upper Miocene Kudankulam Formation, Southern India: implication for provenance, weathering and tectonic setting. J Sediment Res 74:285–297

    Article  Google Scholar 

  • Basu A (1985) Influence of climatic and relief on compositions of sands released at source areas. In: Zuffa, G. G. (Ed.), Provenance of Arenites: NATO, Advanced Study Institute Series 148:1–18.

  • Bender FK, Raza HA (eds) (1995) Geology of Pakistan. Gebrüder Bornträger, Stuttgart, 410 pp

  • Bhatia MR (1983) Plate tectonics and geochemical composition of sandstones. The Journal of Geology 9:611–627

    Article  Google Scholar 

  • Bhatia MR, Crook AW (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol 92:181–193

    Article  Google Scholar 

  • Blatt H, Middleton G, Murray R (1980) Origin of sedimentary rocks. Prentice-Hall, 782 pp

  • Buggle B, Glaser B, Hambach U, Gerasimenko N, Markovic S (2011) An evaluation of geochemical weathering indices in loessepaleosol studies. Quat Int 240:12–21

    Article  Google Scholar 

  • Carter A, Najman Y, Bahroudi A, Bown P, Garzanti E, Lawrence RD (2010) Locating earliest records of orogenesis in western Himalaya: evidence from Paleogene sediments in the Iranian Makran region and Pakistan Katawaz basin. Geology 38:807–810

    Article  Google Scholar 

  • Cheema MR, Raza SM, Ahmad H (1977) Cenozoic. In: Shah, S. M. I. (Ed.), Stratigraphy of Pakistan: Geological Survey of Pakistan, Quetta, Memoir 12:56–98.

  • Cox R, Lowe DR, Cullers RL (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim Cosmochim Acta 59:2919–2940

    Article  Google Scholar 

  • Cullers RL (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos 51:181–203

    Article  Google Scholar 

  • Dickinson WR (1970) Interpreting detrital modes of graywake and arkose. J Sediment Petrol 40:695–707

    Google Scholar 

  • Dickinson WR (1974) Plate tectonics and sedimentation. In: Dickinson, W.R. (Ed.), Tectonics and sedimentation. Society of Economic Paleontologists and Mineralogists Special Publication 22:1–27.

  • Dickinson WR (1985) Interpreting provenance relations from detrital modes of sandstones. In: Zuffa GG (ed) Provenance of arenites: NATO Advanced Study Institute series 148: D. Reidel Publishing Company, Dordrecht, Netherlands, pp. 3–61

    Google Scholar 

  • Dickinson WR, Suczek CA (1979) Plate tectonics and sandstone composition. Am Assoc Pet Geol Bull 63:2164–2182

    Google Scholar 

  • Dickinson WR, Beard LS, Brakenridge GR, Erjavec JL, Ferguson RC, Inman KF, Kneep RA, Lindberg FA, Ryberg PT (1983) Provenance of North America Phanerozoic sandstones in relation to tectonic setting. Geol Soc Am Bull 94:222–235

    Article  Google Scholar 

  • Fatmi AN (1977) Mesozoic. In: Shah, S. M. I. (Ed.), Stratigraphy of Pakistan. Geological Survey of Pakistan, Quetta, Memoir 12:29–56.

  • Fedo CM, Nesbitt HW, Young GM (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23:921–924

    Article  Google Scholar 

  • Gazzi P (1966) Le arenarie del flysch sopra cretaceo dell’Appenninomodenese; correlazioni con il flysch di monghidoro. Mineral Petrogr Acta 16:69–97

    Google Scholar 

  • Gnos E, Khan M, Mahmood K, Khan AS, Villa I (1996) Bela oceanic lithosphere assemblage and its relation to the reunion hotspot. Terra Nov. 10:90–95

  • Harker A (1909) The natural history of igneous rocks. Macmillan Publisher, New York, 384 pp

  • Harnois L (1988) The CIW Index: a new chemical index of weathering. Sediment Geol 55:319–322

    Article  Google Scholar 

  • Hiscott RN (1978) Provenace of Ordovician deep-water sandstones, Tourelle Formation, Quebec, and implications for initiation of the Taconic orogeny. Canadian Journal of Earth Science 15:1579–1597

    Article  Google Scholar 

  • Hiscott RN (1984) Ophiolitic source rocks for Taconic-age flysch: trace-element evidence. Geol Soc Am Bull 95:1261–1267

    Article  Google Scholar 

  • Hossain HMZ, Roser BP, Kimura J–I (2010) Petrography and whole-rock geochemistry of the tertiary Sylhet succession, Northeastern Bengal Basin, Bangladesh: provenance and source area weathering. Sediment Geol 228:171–183

    Article  Google Scholar 

  • Hubert JF (1967) Sedimentology of prealpine flysch sequences, Switzerland. J Sediment Petrol 37:885–907

    Google Scholar 

  • Jones (1961) Reconnaissance geology of part of West Pakistan: a Colombo Plan Cooperation Project. Canada, Toronto

    Google Scholar 

  • Ingersoll RV, Suczek CA (1979) Petrology and provenance of Neogene sand from Nicobar and Bengal Fans, DSDP sites 211 and 218. J Sediment Petrol 49:1217–1228

    Google Scholar 

  • Ingersoll RV, Bullard TF, Ford RL, Grimm JP, Pickle JD, Sares SW (1984) The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method. J Sediment Petrol 54:103–116

    Google Scholar 

  • Iqbal M (2004) Integration of satellite data and field observation in Pishin Basin, Balochistan. Pakistan Journal of Hydrocarbon Research 14:1–17

    Google Scholar 

  • Jadoon IAK, Khurshid A (1996) Gravity and tectonic model across the Sulaiman fold belt and the Chaman fault zone in western Pakistan and eastern Afghanistan. Tectonophysics 254:89–109

    Article  Google Scholar 

  • Kakar MI (2004) Petrological and structural studies of the metamorphic sole rock, associated with Muslim Bagh Ophiolite, Balochistan, Pakistan. M. Phil. Thesis (unpublished). Centre of Excellence in Mineralogy, University of Balochistan, Quetta, Pakistan.

  • Kasi AK (2012) Stratigraphy, sedimentology and petrology of the Miocene-Pleistocene succession, Pishin Belt, Balochistan, Pakistan. Unpublished Ph.D. Thesis, University of Balochistan.

  • Kasi AK, Kassi AM, Umar M, Manan RA, Kakar MI (2012) Revised lithostratigraphy of the Pishin Belt, northwestern Pakistan. Journal of Himalayan Earth Sciences 45:53–65

    Google Scholar 

  • Kasi AK, Kassi AM, Friis H, Kakar MI, Manan RA (2014) Clay minerals assemblage in the Neogene fluvial succession of the Pishin Belt, Pakistan: implications for provenance. Journal of Himalayan Earth Sciences 47:63–73

    Google Scholar 

  • Kazmi AH, Jan MQ (1997) Geology and tectonics of Pakistan. Graphic Publishers, Peshawar, 554 pp

  • Kazmi AH, Abbasi IA (2008) Stratigraphy and Historical Geology of Pakistan. National Centre of Excellence in Geology, Peshawar

  • Khan M, Kerr AC, Mahmood K (2007) Formation and tectonic evolution of the Cretaceous-Jurassic Muslim Bagh ophiolitic complex, Pakistan: implications for the composite tectonic setting of ophiolites. J Asian Earth Sci 31:112–127

    Article  Google Scholar 

  • Khan SD, Mahmood K, Casey JF (2007) Mapping of Muslim Bagh ophiolite complex (Pakistan) using new remote sensing, and field data. J Asian Earth Sci 30:333–343

    Article  Google Scholar 

  • Lawrence RD, Yeats RS (1979) Geological reconnaissance of Chaman Fault in Pakistan. In: Farah A, DeJong KA (eds) Geodynamics of Pakistan. Geological Survey of Pakistan, Quetta, pp. 351–357

    Google Scholar 

  • Lawrence RD, Khan SH, DeJong KA, Farah A, Yeats RS (1981) Thrust and strike slip fault interaction along the Chaman transform zone, Pakistan. In: McClay, K., price, N. J. (eds.), Thrust and nappe tectonics. Geol Soc Lond Spec Publ 9:363–370.

  • Mahmood K, Boudier F, Gnos E, Monie P, Nicolas A (1995) 40Ar/39Ar dating of the emplacement of the Muslim Bagh ophiolite, Pakistan. Tectonophysics 250:169–181

    Article  Google Scholar 

  • Maldonado F, Mengal JM, Khan SH, Thomas J-C (2011) Digital Geologic Map and Landsat Image Map of Parts of Loralai, Sibi, Quetta, and Khuzar Divisions, Balochistan Province, West-Central Pakistan. U.S. Geological Survey Open-File Report 2011–1093, 2 sheets, scale 1:250,000.

  • McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry Geophysics Geosystems 2, 2000GC000109.

  • McLennan SM, Hemming S, McDaniel DK, Hanson GN (1993) Geochemical approaches to sedimentation, provenance and tectonics. Geological Society of America, special paper, 284.

  • Mengal JM, Kimura K, Siddiqui RH, Kojima S, Naka T, Bakht MS, Kamada K (1996) The lithology and structure of a Mesozoic sedimentary-igneous assemblage beneath the Muslim Bagh ophiolite, northern Balochistan, Pakistan. Proceedings of Geoscience Colloquium Geoscience Laboratory, Geological Survey of Pakistan 16:213–228

    Google Scholar 

  • Munir M, Ahmed Z (1985) Petrochemistry of the contact rocks from northwestern Jungtorghar segment of the Zhob Valley ophiolite, Pakistan. Acta Mineralogica Pakistanica 1:38–48

    Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim Cosmochim Acta 48:1523–1534

    Article  Google Scholar 

  • Nesbitt HW, Young GM, McLennanSM KRR (1996) Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. J Geol 104:525–542

    Article  Google Scholar 

  • Pettijohn FJ, Potter PE, Siever R (1987) Sand and sandstone. Springer-Verlag, New York

    Book  Google Scholar 

  • Powell CMA (1979) A speculative tectonic history of Pakistan and surroundings: some constraints from the Indian Ocean. In: Farah A, DeJong KA (eds) Geodynamics of Pakistan. Geological Survey of Pakistan, Quetta, pp. 5–24

    Google Scholar 

  • Putnam PE (1982) Fluvial channel sandstones within upper Mannville (Albian) of Lloydminster area, Canada—geochemistry, petrography, and paleageographic implications. Am Assoc Pet Geol Bull 66:436–459

    Google Scholar 

  • Qayyum M (1997) Sedimentation and tectonics in the Tertiary Katawaz Basin, NW Pakistan: a basin analysis approach. Ph.D thesis (unpublished), Oregon State University, USA.

  • Qayyum M, Niem AR, Lawrence RD (1996) Newly discovered Paleogene deltaic sequence in Katawaz basin, Pakistan and its tectonic implications. Geology 24:835–838

    Article  Google Scholar 

  • Qayyum M, Lawrence RD, Niem AR (1997) Molasse-delta-flysch continuum o fthe Himalayan orogeny and closure of the Paleogene katawaz remnant ocean, Pakistan. Int Geol Rev 39:861–875

    Article  Google Scholar 

  • Qayyum M, Niem AR, Lawrence RD (2001) Detrital modes and provenance of the Paleogene Khojak Formation in Pakistan: implications for early Himalayan orogeny and unroofing. Geol Soc Am Bull 113:320–332

    Article  Google Scholar 

  • Roser BP, Korsch RJ (1988) Provenance signatures of sandstone–mudstone suites determined using discriminant function analysis of major-element data. Chem Geol 67:119–139

    Article  Google Scholar 

  • Sarwar G (1992) Tectonic setting of the Bela ophiolites, Southern Pakistan. Tectonophysics 207:359–381

    Article  Google Scholar 

  • Sarwar G, DeJong KA (1979) Arcs, oroclines, syntaxes: the curvatures of mountain belts in Pakistan. In: Farah A, DeJong KA (eds) Geodynamics of Pakistan. Geological Survey of Pakistan, Quetta, pp. 341–349

    Google Scholar 

  • Sawada Y, Siddiqui RH, Khan SR, Aziz A (1992) Mesozoic igneous activity in the Muslim Bagh area, Pakistan, with special reference to hotspot magmatism related to the break-up of the Gondwanaland. Proceedings of Geoscience Colloquium Geoscience Laboratory, Geological Survey of Pakistan 1:21–70

    Google Scholar 

  • Siddiqui RH, Aziz A, Mengal JM, Hoshino K, Sawada K (1996) Geology, petrochemistry and tectonic evolution of Muslim Bagh ophiolite complex, Pakistan. Proceedings of Geoscience Colloquium Geoscience Laboratory, Geological Survey of Pakistan, Quetta 16:11–46

    Google Scholar 

  • Suczek CA, Ingersoll RV (1985) Petrology and provenance of Cenozoic sand from the Indus Cone and the Arabian Basin, DSDP sites 221, 222, and 224. J Sediment Petrol 55:340–346

    Google Scholar 

  • Suttner LJ, Dutta PK (1986) Alluvial sandstone composition and paleoclimate, I. Framework mineralogy. Journal of Sedimentary Petrology 56:329–345

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific, Oxford, 312 pp

  • Treloar PJ, Izatt CN (1993) Tectonics of the Himalayan collision between the Indian plate and the Afghan block: a synthesis. In: treloar, P. J., Searle, M. P. (eds.), Himalayan tectonics. Geological Society, London, Special Publication 74:69–87.

  • Valloni R, Mezzardi G (1984) Compositional suites of terrigenous deep sea sands of the present continental margins. Sedimentology 31:353–364

    Article  Google Scholar 

  • Van de Kamp PC, Leake BE (1985) Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin. Trans. Royal Society of Edinburgh: Earth Science 76:411–449

    Article  Google Scholar 

  • Zuffa GG (1980) Hybrid arenites: their composition and classification. J Sedimentary Petrology 50:21–29

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Higher Education Commission Pakistan for providing funds and to the Centre of Excellence in Mineralogy, University of Balochistan, Pakistan, for the logistical support. Thanks are also due to the laboratory staff at Department of Geoscience, Aarhus University, Denmark, for their service during sample preparation and analysis. The journal reviewers are thanked for thorough and very constructive reviews which have improved the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Friis.

Electronic Supplementary Material

Appendix 1

Supplementary data (XLSX 30 kb)

Appendix 2

Supplementary data (XLSX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasi, A.K., Kassi, A.M., Friis, H. et al. Detrital mode and whole-rock geochemistry of the Miocene-Pliocene fluvial succession, Pishin Belt, Pakistan: implications on provenance and source area weathering in peripheral foreland basins. Arab J Geosci 9, 401 (2016). https://doi.org/10.1007/s12517-016-2415-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-016-2415-9

Keywords

Navigation