Skip to main content

Advertisement

Log in

Debris control on glacier thinning—a case study of the Batal glacier, Chandra basin, Western Himalaya

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Complex factors such as climate, glacial geometry, topographical features and debris covers have significant influence on the dynamics of the Himalayan glaciers. Presence of debris covers on the surface of glaciers can significantly alter the surface energy balance and influence the climatic response of glaciers. In this study, the influence of debris covers and its impact on the ablation processes were analyzed from the in situ data collected over the surface of the Batal glacier in Chandra Basin, Western Himalaya. Almost 90 % of the ablation zone of the Batal glacier is covered by debris, 35 % of which is thick debris (>10 cm). Fourteen stakes (depth ∼10 m) with increasing altitude and with varying debris thicknesses were installed to cover the whole ablation zone. Among them, four stakes represent thin debris (<2 cm), two stakes represent 2–5 cm debris thickness, two stakes represent 5–25 cm debris thickness, three stakes represent 25–50 cm debris thickness and three stakes represent >50 cm debris thickness. Our study has revealed high surface melting (−2.0 cm. w.e.d−1) in the debris free glacier while low surface melting observed in thick debris covered ice (−0.6 cm. w.e.d−1). Although limited to one season, this observation revealed a significant difference in the rate of surface melting as per the increasing debris thickness. Contrasting to normal ablation pattern over glaciers, Batal has experienced inverse retreat rate of ablation along with increasing altitude. A high degree of negative correlation (r = −0.82, p < 0.05) between ablation rate and debris thickness in Batal suggest a significant control of debris thickness over ablation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Azam MF, Wagnon P, Ramanathan A, et al. (2012) From balance to imbalance: a shift in the dynamic behaviour of Chhota Shigri glacier, Western Himalaya, India. J Glaciol 58:315–324. doi:10.3189/2012JoG11J123

    Article  Google Scholar 

  • Bali R, Agarwal KK, Ali SN, Srivastava P (2011) Is the recessional pattern of Himalayan glaciers suggestive of anthropogenically induced global warming? Arab J Geosci 4:1087–1093. doi:10.1007/s12517-010-0155-9

    Article  Google Scholar 

  • Benn DI, Bolch T, Hands K, et al. (2012) Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Sci Rev 114:156–174. doi:10.1016/j.earscirev.2012.03.008

    Article  Google Scholar 

  • Berthier E, Arnaud Y, Kumar R, et al. (2007) Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sens Environ 108:327–338. doi:10.1016/j.rse.2006.11.017

    Article  Google Scholar 

  • Bhambri R, Bolch T, Chaujar RK (2011) Mapping of debris-covered glaciers in the Garhwal Himalayas using ASTER DEMs and thermal data. Int J Remote Sens 32:8095–8119. doi:10.1080/01431161.2010.532821

    Article  Google Scholar 

  • Bolch T (2007) Climate change and glacier retreat in Northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data. Glob Planet Change 56:1–12. doi:10.1016/j.gloplacha.2006.07.009

    Article  Google Scholar 

  • Bolch T, Kulkarni A, Kaab A, et al. (2012) The state and fate of Himalayan Glaciers. Science (80-)(336):310–314. doi:10.1126/science.1215828

    Article  Google Scholar 

  • Chaturvedi RK, Kulkarni A, Karyakarte Y, et al (2014) Glacial mass balance changes in the Karakoram and Himalaya based on CMIP5 multi-model climate projections. Clim Change 1–14. doi: 10.1007/s10584–013-1052-5

  • Collier E, Nicholson LI, Brock BW, et al. (2014) Representing moisture fluxes and phase changes in glacier debris cover using a reservoir approach. Cryosph 8:1429–1444. doi:10.5194/tc-8-1429-2014

    Article  Google Scholar 

  • Dobhal DP, Mehta M, Srivastava D (2013) Influence of debris cover on terminus retreat and mass changes of Chorabari glacier, Garhwal region, Central Himalaya, India. J Glaciol 59:961–971. doi:10.3189/2013JoG12J180

    Article  Google Scholar 

  • Fickert T, Friend D, Gruninger F, et al. (2007) Did debris-covered glaciers serve as Pleistocene refugia for Plants? A new hypothesis derived from observations of recent plant growth on glacier surface. Arctic, Antarct Alp Res 39:245–257

    Article  Google Scholar 

  • Kääb A, Berthier E, Nuth C, et al. (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488:495–498. doi:10.1038/nature11324

    Article  Google Scholar 

  • Karimi N, Eftekhari M, Farajzadeh M, et al. (2015) Use of multitemporal satellite images to find some evidence for glacier changes in the Haft-Khan glacier, Iran. Arab J Geosci 8:5879–5896. doi:10.1007/s12517-014-1578-5

    Article  Google Scholar 

  • Kayastha RB, Takeuchi Y, Nakawo M, Ageta Y (2000) Practical prediction of ice melting beneath various thickness of debris cover on Khumbu Glacier, Nepal, using a positive degree-day factor. IAHS Publ 71–81

  • Kirkbride MP, Dugmore AJ (2003) Glaciological response to distal tephra fallout from the 1947 eruption of Hekla, south Iceland. J Glaciol 49:420–428. doi:10.3189/172756503781830575

    Article  Google Scholar 

  • Kulkarni AV, Rathore BP, Singh SK, Bahuguna IM (2011) Understanding changes in the Himalayan cryosphere using remote sensing techniques. Int J Remote Sens 32:601–615. doi:10.1080/01431161.2010.517802

    Article  Google Scholar 

  • Lambrecht A, Mayer C, Hagg W, et al. (2011) A comparison of glacier melt on debris-covered glaciers in the northern and Southern Caucasus. Cryosphere 5:525–538. doi:10.5194/tc-5-525-2011

    Article  Google Scholar 

  • Mattson LE (2000) The influence of a debris cover on the midsummer discharge of Dome Glacier, Canadian Rocky Mountains. IAHS Publ 264:25–33

    Google Scholar 

  • Mattson LE, Gardner JS, Young GJ (1993) Ablation on debris covered glaciers: an example from the Rakhiot Glacier, Punjab. Himalaya IAHS Publ 218:289–296

    Google Scholar 

  • Mihalcea C, Mayer C, Diolaiuti G, et al. (2006) Ice ablation and meteorological conditions on the debris-covered area of Baltoro glacier, Karakoram, Pakistan. Ann Glaciol 43:292–300. doi:10.3189/172756406781812104

    Article  Google Scholar 

  • Miles ES, Pellicciotti F, Willis IC, et al. (2016) Refined energy-balance modelling of a supraglacial pond, Langtang Khola, Nepal. Ann Glaciol 57:29–40. doi:10.3189/2016AoG71A421

    Article  Google Scholar 

  • Nakawo M, Yabuki H, Sakai A (1999) Characteristics of Khumbu Glacier, Nepal Himalaya: recent change in the debris-covered area. Ann Glaciol 28:118–122. doi:10.3189/172756499781821788

    Article  Google Scholar 

  • Nicholson L, Benn DI (2006) Calculating ice melt beneath a debris layer using meteorological data. J Glaciol 52:463–470. doi:10.3189/172756506781828584

    Article  Google Scholar 

  • Pandey P, Venkataraman G (2013) Changes in the glaciers of Chandra–Bhaga basin, Himachal Himalaya, India, between 1980 and 2010 measured using remote sensing. Int J Remote Sens 34:5584–5597. doi:10.1080/01431161.2013.793464

    Article  Google Scholar 

  • Pellicciotti F, Stephan C, Miles E, et al. (2014) Mass balance changes of the debris-covered glaciers in the Langtang Himal in Nepal between 1974 and 1999. J Geophys Res 61:1–27. doi:10.3189/2015JoG13J237

    Google Scholar 

  • Pithan F (2011) A model study of the energy and mass balance of Chhota Shigri glacier in the Western Himalaya, India. Cryosph Discuss 5:95–129. doi:10.5194/tcd-5-95-2011

    Article  Google Scholar 

  • Pratap B, Dobhal DP, Mehta M, Bhambri R (2015) Influence of debris cover and altitude on glacier surface melting: a case study on Dokriani glacier, Central Himalaya, India. Ann Glaciol 56:9–16. doi:10.3189/2015AoG70A971

    Article  Google Scholar 

  • Reid TD, Brock BW (2010) An energy-balance model for debris-covered glaciers including heat conduction through the debris layer. J Glaciol 56:903–916. doi:10.3189/002214310794457218

    Article  Google Scholar 

  • Reznichenko N, Davies T, Shulmeister J, McSaveney M (2010) Effects of debris on ice-surface melting rates: an experimental study. J Glaciol 56:384–394. doi:10.3189/002214310792447725

    Article  Google Scholar 

  • Rounce DR, McKinney DC (2014) Thermal resistances in the Everest Area (Nepal Himalaya) derived from satellite imagery using a nonlinear energy balance model. Cryosph 8:1317–1329. doi:10.5194/tcd-8-887-2014

    Article  Google Scholar 

  • Rounce DR, Quincey DJ, McKinney DC (2015) Debris-covered energy balance model for Imja-Lhotse Shar Glacier in the Everest region of Nepal. Cryosph 9:3503–3540. doi:10.5194/tcd-9-3503-2015

    Article  Google Scholar 

  • Sakai A, Nakawo M, Fujita K (2002) Distribution characteristics and energy balance of ice cliffs on debris-covered glaciers, Nepal Himalaya. Arctic, Antarct Alp Res 34:12–19

    Article  Google Scholar 

  • Salerno F, Thakuri S, D’Agata C, et al. (2012) Glacial lake distribution in the Mount Everest region: uncertainty of measurement and conditions of formation. Glob Planet Change 92-93:30–39. doi:10.1016/j.gloplacha.2012.04.001

    Article  Google Scholar 

  • Salerno F, Guyennon N, Thakuri S, et al. (2015) Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last 2 decades (1994–2013). Cryosph 9:1229–1247. doi:10.5194/tc-9-1229-2015

    Article  Google Scholar 

  • Scherler D, Bookhagen B, Strecker MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat Geosci 4:156–159. doi:10.1038/ngeo1068

    Article  Google Scholar 

  • Schomacker A (2008) What controls dead-ice melting under different climate conditions? A discussion. Earth-Sci Rev 90:103–113. doi:10.1016/j.earscirev.2008.08.003

    Article  Google Scholar 

  • Sharma P, Ramanathan AL, Pottakkal J (2013) Study of solute sources and evolution of hydrogeochemical processes of the Chhota Shigri glacier melt waters, Himachal Himalaya, India. Hydrol Sci J 58:1128–1143. doi:10.1080/02626667.2013.802092

    Article  Google Scholar 

  • Shekhar MS, Chand H, Kumar S, et al. (2010) Climate-change studies in the Western Himalaya. Ann Glaciol 51:105–112. doi:10.3189/172756410791386508

    Article  Google Scholar 

  • Singh VB, Ramanathan A, Sharma P, Pottakkal JG (2013) Dissolved ion chemistry and suspended sediment characteristics of meltwater draining from Chhota Shigri glacier, Western Himalaya, India. Arab J Geosci 8:281–293. doi:10.1007/s12517-013-1176-y

    Article  Google Scholar 

  • Suzuki R, Fujita K, Ageta Y (2007) Spatial distribution of thermal properties on debris-covered glaciers in the Himalayas derived from ASTER data. Bull Glaciol Res 24:13–22

    Google Scholar 

  • Thakuri S, Salerno F, Smiraglia C, et al. (2014) Tracing glacier changes since the 1960s on the south slope of Mt. Everest (central Southern Himalaya) using optical satellite imagery. Cryosphere 8:1297–1315. doi:10.5194/tc-8-1297-2014

    Article  Google Scholar 

  • Thayyen RJ, Gergan JT (2010) The cryosphere role of glaciers in watershed hydrology: a preliminary study of a “Himalayan catchment.”. Cryosph 4:115–128. doi:10.5194/tc-4-115-2010

    Article  Google Scholar 

  • Vincent C, Ramanathan A, Wagnon P, et al. (2013) Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (Northern India, Himalaya) during the nineties preceded recent mass loss. Cryosph 7:569–582. doi:10.5194/tc-7-569-2013

    Article  Google Scholar 

  • Wagnon P, Linda A, Arnaud Y, et al. (2007) Four years of mass balance on Chhota Shigri glacier, Himachal Pradesh, India, a new benchmark glacier in the Western Himalaya. J Glaciol 53:603–611. doi:10.3189/002214307784409306

    Article  Google Scholar 

  • Yadav RR, Park WK, Singh J, Dubey B (2004) Do the Western Himalayas defy global warming? Geophys Res Lett. doi:10.1029/2004GL020201

    Google Scholar 

Download references

Acknowledgments

We thank the Director, National Centre for Antarctic and Ocean Research (NCAOR), Goa for his continued support. The National Remote Sensing Centre, Hyderabad, is acknowledged for Indian Remote Sensing satellite images and U. S. Geological Survey (USGS) for Landsat images and ASTER GDEM V2 datasets. We thank our field assistant Mr. B. B. Adhikari and all the porters involved in our field trips. We are thankful to anonymous reviewers for the valuable comments. This is NCAOR contribution no. 04/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lavkush Kumar Patel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, L.K., Sharma, P., Thamban, M. et al. Debris control on glacier thinning—a case study of the Batal glacier, Chandra basin, Western Himalaya. Arab J Geosci 9, 309 (2016). https://doi.org/10.1007/s12517-016-2362-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-016-2362-5

Keywords

Navigation