Skip to main content
Log in

Ultramafic rocks in Gabal El-Rubshi, Central Eastern Desert, Egypt: petrography, mineral chemistry, and geochemistry constraints

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Petrographic, mineral chemistry, and geochemical studies of the ultramafic rocks from the El-Rubshi range, the main ophiolitic outcrop of the Neoproterozoic (Cryogenian) Complex in Central Eastern Desert of Egypt, provide new petrogenetic data evidence on the nature of the fluids that interacted with an original mantle peridotite. Certain primary features and chemical parameters are maintained even after their multistage histories of alteration, deformation, strain, and metamorphism. Chemo-metamorphic conditions and textures of the studied serpentinites and amphibolites show the principal events of recrystallization and metasomatism, but the diagnostic phases associated with the high pressure events related to subduction were erased. The occurrences of chrome spinels are relatively abundant in the oceanic domain ophiolites. The ophiolitic (serpentinite and amphibolite) rocks show extensive alteration, including hydration, carbonization, and serpentinization of the ultramafic rocks and amphibolization and chloritization of the basic rocks. Like arc-related rocks, the Ti contents of oceanic ophiolites are low in most samples but slightly higher in a few. Mantle heterogeneities may have caused the components with diverse geochemical signatures that are indicative of tholeiitic-komatiitic rocks, mid-ocean ridge basalts, and the enriched rocks of the oceanic islands or seamounts. Normalized trace element patterns of the studied serpentinite and amphibolite samples are characteristic of peridotites from both supra-subduction (SSZ) and mid-ocean ridge (MOR) zones. The pyroxenites are magmatic intruded within the El-Rubshi serpentinites and amphibolites, tholeiitic magma, and within-plate tholeiite environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abd El-Naby H, Frisch W (2006) Geochemical constraints from the Hafafit Metamorphic Complex (HMC): evidence of Neoproterozoic back-arc basin development in the central Eastern Desert of Egypt. J Afr Earth Sci 45:173–186

    Article  Google Scholar 

  • Abdel-Karim AM, Ahmed Z (2010) Possible origin of the ophiolites of Eastern Desert, Egypt, from geochemical perspectives. Arab J Sci Eng 35(1A):115–143

    Google Scholar 

  • Abu El-Ela FF (1997) The metavolcanic rocks from Atalla-Saqia District, Eastern Desert of Egypt: remnant of marginal basin setting. The 3rd Conference on Geochemistry, Alexandria, pp. 345–374

  • Ahmed, A.A., 1983. Ultrabasic and basic intrusions in the Eastern Desert, Egypt. In: S. Riad and D.L. Baars (eds.), 5th International Basement Tectonics, Cairo, Egypt, 69-75p.

  • Ahmed AH, Arai S, Attaia AK (2001) Petrological characteristics of the Pan African podiform chromatite and associated peridotites of the Proterozoic ophiolite complexes, Egypt. Mineral Deposita 36:72–84

    Article  Google Scholar 

  • Akaad MK, Noweir AM (1980) Geology and lithostratigraphy of the Arabian Desert orogenic belt of Egypt between latitudes 25°35 N and 26°30 N. Inst Appl Geol Jeddah Bull 3:127–135

    Google Scholar 

  • Amstutz GC, El-Gaby S, Ahmed AA, Habib ME, Khudeir AA (1984) Back-arc ophiolite association, Central Eastern Desert, Egypt. Bull Fac Sci Assuit Univ 13:95–136

    Google Scholar 

  • Arai S, Abe N (1994) Podiform chromitite in the arc-mantle: chromitite xenoliths from the Takashima alkali basalt, Southwest Japan Arc. Mineral Deposita 29:434–438

    Article  Google Scholar 

  • Arai S, Yurimoto H (1995) Possible sub-arc origin of podiform chromitites. Island Arc 4:104–111

    Article  Google Scholar 

  • Arai S, Shimizu Y, Ismail SA, Ahmed AH (2006) Low-T formation of high-Cr spinel with apparently primary chemical characteristics within podiform chromitite from Rayat, northeastern Iraq. Mineral Mag 70:499–508

    Article  Google Scholar 

  • Azer MK, Stern RJ (2007) Neoproterozoic (835–720 Ma) serpentinites in the Eastern Desert, Egypt: fragments of forearc mantle. J Geol 115:457–472

    Article  Google Scholar 

  • Bach W, Peucker-Ehrenbrink B, Hart SR, Blusztajn JS (2003) Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B—implications for sea water crust exchange budgets and Sr- and Pb-isotopic evolution of the mantle. Geochem Geophys Geosyst 4(3):8904. doi:10.1029/2002GC000419

    Article  Google Scholar 

  • Barker F, Arth JG, Stern TW (1986) Evolution of the coast batholit along the Skagway Traverse, Alaska and British Columbia. Am Mineral 71:632–643

    Google Scholar 

  • Barnes SJ (2000) Chromite in komatiites. II. Modifications during greenschist to mid-amphibolite facies metamorphism. J Petrol 41:387–409

    Article  Google Scholar 

  • Barnes SJ, Roeder PL (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302

    Article  Google Scholar 

  • Beccaluva L, Girolamo P, Macciotta G, Morra V (1983) Magma affinities and fractionation trends in ophiolites. Ofioliti 8(3):307–324

    Google Scholar 

  • Berly TJ, Hermann J, Arculus RJ, Lapierre H (2006) Supra-subduction zone pyroxenites from San Jore and Santa Isabel (Solomon Isalnds). J Petrol 47:1531–1555

    Article  Google Scholar 

  • Bertrand J, Dietrich V, Nievergelt P, Vuagnat M (1987) Comparative major and trace element geochemistry of gabbroic and volcanic rock sequences, Montgenevre Ophiolite, Western Alps. Schweiz Mineral Petrogr Mitt 67:147–169

    Google Scholar 

  • Blanco-Quintero IF, Proenza JA, García-Casco A, Tauler A, Gali S (2011) Serpentinites and serpentinites within a fossil subduction channel: La Corea mélange, eastern Cuba. Geologica Acta 9, Nos 3–4, September-December 2011, 38–405. doi:10.1344/10.000001662

  • Bloomer SH, Taylor B, MacLeod CJ, Stern RJ, Fryer P, Hawkins JW, Johnson L (1995) Early arc volcanism and the ophiolite problem: a perspective from drilling in the Western Pacific. In: Taylor B, Natland J (eds) Active margins and marginal basins of the Western Pacific. AGU Geophysical Monograph 88, pp. 1–30

  • Bonatti E, Honnorez J, Kirst P, Radicati F (1975) Metagabbros from the Mid-Atlantic Ridge at 6°N: contact–hydrothermal–dynamic metamorphism beneath the axial valley. J Geol 83:61–78

    Article  Google Scholar 

  • Bowen NL, Tuttle OF (1949) The system SiO2-H2O-MgO. Bull Geol Soc Am 60:439

    Article  Google Scholar 

  • Chernosky JV, Berman RG, Bryndzia LT (1988) Stability, phase relations, and thermodynamic properties of chlorites and serpentine group minerals. In Bailey SW (ed) Hydrous phyllosilicates: Mineralogical Society of America Reviews in Mineralogy 19: 295–346

  • Coleman RG (1977) Ophiolites—ancient oceanic lithosphere. Springer, Berlin, Heidelberg

    Google Scholar 

  • D’Antonio M, Kristensen MB (2004) Serpentine and brucite of ultramafic clasts from the South Chamorro Seamount (Ocean Drilling Program Leg 196, Site 1200): inferences for the serpentinization of the Mariana forearc mantle. Mineral Mag 68:887–904

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1966) An introduction to the rock-forming minerals. Longmans

  • Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine type peridotites and spatially associated lavas. Contrib Mineral Petrol 86:5–76

    Article  Google Scholar 

  • Domanik KJ, Holloway JR (2000) Experimental synthesis and phase relations of phengitic muscovite from 6.5 to 11 GPa in a calcareous metapelite from the Dabie Mountains, China. Lithos 52:51–77

    Article  Google Scholar 

  • Edward SJ (1995) Boninitic and tholeiitic dykes in the Lewis Hills mantle section of the Bay of Islands ophiolite: implications for magmatism adjacent to a fracture zone in a back-arc spreading environment. Can J Earth Sci 32:2128–2146

    Article  Google Scholar 

  • Edwards SJ, Pearce JA, Freeman J (2000) New insights concerning the influence of water during the formation of podiform chromite. In: Dilek Y, Moores EM, Elthon D, Nicolas A (eds) Ophiolites and oceanic crust: new insights from field studies and the ocean drilling program: Geological Society of America. Special Paper, 349: 139–147

  • El-Desoky HM, Khalil AE (2011) Evolution of the talc-carbonate rocks in Umm Rilan ophiolite, South Eastern Desert, Egypt: implication from mineralogy, petrography, geochemistry and p-t conditions. Al-Azhar Bull Sci 22(2):1–32

    Google Scholar 

  • Ernst WG (1993) Metamorphism of Franciscan tectonostratigraphic assemblage, Pacheco Pass area, east-central Diablo Range, California Coast Ranges. Geol Soc Am Bull 105:618–636

    Article  Google Scholar 

  • Evans BW, Frost BR (1975) Chrome-spinel in progressive metamorphism—a preliminary analysis. Geochim Cosmochim Acta 39:959–972

    Article  Google Scholar 

  • Farahat ES (2008) Chrome-spinels in serpentinites and talc carbonates of the El Edeid-El Sodmein District, Central Eastern Desert, Egypt: their metamorphism and petrogenetic implication. Chem Erde Geochem 68:193–205

    Article  Google Scholar 

  • Farahat ES, El Mahalawi MM, Hoinkes G, Abdel Aal AY (2004) Continental back-arc basin origin of some ophiolites from the Eastern Desert of Egypt. Mineral Petrol 82:81–104

    Article  Google Scholar 

  • Gartzos E, Dietrch VJ, Migiros G, Serelis K, Lymperopoulou TH (2009) The origin of amphibolites from the metamorphic soles beneath the ultramafic ophiolites in Evia and Lesvos (Greece) and their geotectonic implication. Lithos 108:224–242

    Article  Google Scholar 

  • Gass IG (1981) Pan African (Upper Proterozoic) plate tectonics of the Arabian–Nubian Shield: Upper Proterozoic to Lower Palaeozoic tectonics (Pan-African event). In: Kroner A (ed) Precambrian plate tectonics. Elsevier, Amsterdam, pp 387–405

    Google Scholar 

  • Gerya TV, Stoeckhert B, Perchuk AL (2002) Exhumation of high-pressure metamorphic rocks in a subduction channel—a numerical simulation. Tectonics 21:1056. doi:10.1029/2002TC001406

    Article  Google Scholar 

  • Ghoneim MF, Takla MA, El-Lebda M (1992) The gabbroic rocks of the Central Eastern Desert, Egypt: a geochemical approach. Ann Geol Surv Egypt 18:1–21

    Google Scholar 

  • Gill J (1981) Orogenic andesites and plate tectonics. Springer, New York, 390 pp

    Book  Google Scholar 

  • Gokhale NW (1968) Chemical composition of biotite as a guide to ascertain the origin of granites. Bull Soc Geol Fin 40:107–111

    Google Scholar 

  • Griffin WL, O'Reilly SY, Afonso JC, Begg GC (2009) The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J Petrol 50:1185–1204

    Article  Google Scholar 

  • Habib ME, El-Gaby S, El-Nady OM (1978) Structures and deformational history of the area west of Gabal El-Rubshi, Eastern Desert, Egypt. Bull Fac Sci Assuit Univ 7(2):99–144

    Google Scholar 

  • Hattori KH, Guillot S (2003) Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology 31:525–528

    Article  Google Scholar 

  • Hawkesworth CJ, Turner SP, McDermott F, Peate DW, van Calsteren P (1997) U–Th isotopes in arc magmas: implications for element transfer from the subducted crust. Science 276:551–555

    Article  Google Scholar 

  • Hegazy HA (1979) Geology of Abu Diwan District, Eastern Desert, Egypt. M.Sc. Thesis, Assuit Univ., Egypt

  • Hey MH (1954) A new review of the chlorites. Mineral Mag 30:272–292

    Google Scholar 

  • Hussein AA, Ali MM, El-Ramly MF (1982) A proposed new classification of the granites of Egypt. J Volcanol Geotherm Res 14:187–198

    Article  Google Scholar 

  • Hussein IM, Kröner A, Reischmann T (2004) The Wadi Onib mafic–ultramafic complex: a Neoproterozoic supra-subduction zone ophiolite in the northern Red Sea Hills of the Sudan. In: Kusky TM (ed) Precambrian ophiolites and related rocks, vol 13, Developments in Precambrian geology. Elsevier, Amsterdam, pp 163–206

    Chapter  Google Scholar 

  • Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548

    Article  Google Scholar 

  • Ishiwatari, A., Sokolov, S.D., Vysotskiy, S.V., 2003. Petrological diversity and origin of ophiolites in Japan and Far East Russia with emphasis on depleted harzburgite. In Dilek, Y., and Robinson, P. T., eds. Ophiolites in earth history. Geol. Soc. Lond. Spec. Publ. 128:597–617

  • Jan MQ, Windley BF (1990) Chromian spinel-silicate chemistry in ultramafic rocks of the Jijal Complex, Northwest Pakistan. J Petrol 31:667–715

    Article  Google Scholar 

  • Kamenetsky VS, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: and empirical study of associated olivine, Cr-spinel, and melt inclusions from primitive rocks. J Petrol 42:655–671

    Article  Google Scholar 

  • Khalil KI (2007) Chromite mineralization in ultramafic rocks of the Wadi Ghadir area, Eastern Desert, Egypt: mineralogical, microchemical and genetic study. Neues Jb Mineral Abh 183:283–296

    Article  Google Scholar 

  • Khalil AES, Azer MK (2007) Supra-subduction affinity in the Neoproterozoic serpentinites in the Eastern Desert, Egypt: evidence from mineral composition. J Afr Earth Sci 49:136–152

    Article  Google Scholar 

  • Khudeir AA (1976) Geology of the Saqi district, Eastern Desert, Egypt. M.Sc. Thesis, Assuit Univ., A.R.E. 191 pp

  • Khudeir AA (1983) Geology of the ophiolite suite of El-Rubshi area, Eastern Desert, Egypt. PhD dissertation, Assuit Univ., 171–174 pp

  • Khudeir AA (1989) Geology, geochemistry and petrogenesis of the intrusive clinopyroxenite-troctolite association of Gabal El-Rubshi, Central Eastern Desert, Egypt. First Conf. Geochem., Alex. Univ., 175–190 pp

  • Kimball KL (1990) Effects of hydrothermal alteration on the composition of chromian spinels. Contrib Mineral Petrol 105:337–346

    Article  Google Scholar 

  • Lago NL, Rabinowicz M, Nicolas A (1982) Podiform chromite ore bodies: a genetic model. J Petrol 23:103–125

    Article  Google Scholar 

  • Le Maitre RW (1989) A classification of igneous rocks and glossary of terms recommendation of the international union of geological sciences subcommision on the systematic of the igneous rocks. Blackwell Sci. Bull, London, p 171

    Google Scholar 

  • Leterrier J, Maury RC, Thonon RCP, Girard D, Marchal M (1982) Clinopyroxene composition as a method of identification of the magmatic affinities of paleovolcanic series. Earth Planet Sci Lett 59:139–154

    Article  Google Scholar 

  • Matveev S, Ballhaus C (2002) Role of water in the origin of podiform chromitite deposits. Earth Planet Sci Lett 203:235–243

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Meschede M (1986) A method of discriminating between different types of mid-Ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem Geol 56:207–218

    Article  Google Scholar 

  • Miyashiro A, Shido F (1980) Differentiation of gabbros in the Mid-Atlantic Ridge near 24 N. Geochem J 14:145–154

    Article  Google Scholar 

  • Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifeit FA, Zussman J (1989) Nomenclature of pyroxenes. Can Mineral 27:143–156

    Google Scholar 

  • Natland JH, Dick HJB (2001) Formation of the lower ocean crust and the crystallization of gabbroic cumulate at a very slowly spreading ridge. J Volcanol Geotherm Res 110(3–4):191–233

    Article  Google Scholar 

  • Nockolds SR (1947) The relation between chemical composition and paragenesis in the biotites of micas of igneous rocks. Am J Sci 245(5):401–420

    Article  Google Scholar 

  • Noweir AM, Takla MA, Kafafi AM (1978) Geology and geochemistry of El-Rubshi ultramafic mass, Eastern Desert, Egypt. Bull Fac Sci Cairo Univ 5:48–67

    Google Scholar 

  • Ohara Y, Stern RJ, Ishii T, Yurimoto H, Yamazaki T (2002) Peridotites from the Mariana Trough: first look at the mantle beneath an active back-arc basin. Contrib Mineral Petrol 143:1–18

    Article  Google Scholar 

  • Padrón-Navarta JA, Hermann J, Garrido CJ, López Sánchez-Vizcaíno V, Gómez-Pugnaire MT (2010) An experimental investigation of antigorite dehydration in natural silica enriched serpentinite. Contrib Mineral Petrol 159:25–42

    Article  Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites: orogenic andesites and related rocks. John Wiley, Chichester, pp 525–547

    Google Scholar 

  • Pearce JA (1983) Role of sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Nantwich, pp 230–249

    Google Scholar 

  • Pearce JA, Lippard SJ, Roberts S (1984) Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar PB, Howells MF (eds) Marginal basin geology. Geological Society, London, Special Publication 16, pp. 77–94

  • Pearce JA, Stern RJ, Bloomer SH, Fryer P (2005) Geochemical mapping of the Mariana arc-basin system: implications for the nature and distribution of subduction components. Geochem Geophys Geosyst 6, Q07006. doi:10.1029/2004GC000895

    Article  Google Scholar 

  • Pfeifer HR (1979) Fuid-Gestein-Interaktion in metamorphen ultramafititen der Zentral Alpen. Ph.D. Thesis, ETH-Zurich. No. 6379. Zurich, Switzerland

  • Rammlmair D (1986) Chromite in the Philippines: its relationship to the tectonic setting of the host ophiolites; Examples from Zambales and Palawan. In: Petraschek W, Karamata S, Karavchenko GG, Johan Z, Economou M, Engin T (eds) Chromites, UNESCO’s IGCP 197 Project, Metallogeny of Ophiolites. Athens: Theophrastus Publications, pp. 285–309

  • Rammlmair D, Roschka H, Steiner L (1987) Systematics of chromitite occurrences in Central Palawan, Philippines. Mineral Deposita 22:190–197

    Article  Google Scholar 

  • Roberts S (1988) Ophiolite chromitite formation: a marginal basin phenomenon? Econ Geol 83:1034–1036

    Article  Google Scholar 

  • Robinson PT, Zhou M-F, Malpas J, Bai W-J (1997) Podiform chromitites: their composition, origin and environment of formation. Episodes 20:247–252

    Google Scholar 

  • Rollinson H (2005) Chromite in the mantle section of the Oman ophiolite: a new genetic model. Island Arc 14:542–550

    Article  Google Scholar 

  • Ryan JG, Morris J, Tera F, Leeman WP, Tsvetkov A (1995) Cross-arc geochemical variations in the Kurile arc as a function of slab depth. Science 270:625–627

    Article  Google Scholar 

  • Salem, I.A., Ghoneim, M.F., Zahran, A.A., Hamdy, M.M., 1997. Petrology and genesis of the ultramafic-hosted vein magnesite deposits at Gabal El-Rubshi, Central Eastern Desert, Egypt. The 3rd Conference on Geochemistry, Alexandria University, 1, pp. 241–267

  • Schiano P, Clocchiatti R, Lorand JP, Massare D, Deloule E, Chaussidon M (1997) Primitive basaltic melts included in podiform chromites from the Oman ophiolite. Earth Planet Sci Lett 146:489–497

    Google Scholar 

  • Serri G (1981) The petrochemistry of ophiolite gabbroic complexes: a key for the classification of ophiolites into low-Ti and high-Ti types. Earth Planet Sci Lett 52:203–212

    Article  Google Scholar 

  • Shackleton RM, Ries AC, Graham RH, Fitches WR (1980) Late Precambrian ophiolitic mélange in the Eastern Desert of Egypt. Nature 285:472–474

    Article  Google Scholar 

  • Shervais JW (1982) Ti–V plots and petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59:101–118

    Article  Google Scholar 

  • Stern RJ, Johanson PR, Kröner A, Yibas B (2004) Neoproterozoic ophiolites of the Arabian-Nubian Shield. In: Kusky TM (ed) Precambrian ophiolites and related rocks, vol 13. Elsevier, Developments in Precambrian Geology, Amsterdam, pp 95–128

    Chapter  Google Scholar 

  • Stevens RE (1944) Composition of some chromites of the Western hemisphere. Am Mineral 29:1–34

    Google Scholar 

  • Stowe CW (1994) Compositions and tectonic settings of chromite deposits through time. Econ Geol 89:528–546

    Article  Google Scholar 

  • Suita MT, Streider AJ (1996) Cr-spinels from Brazilian mafic-ultramafic complexes: metamorphic modifications. Int Geol Rev 38:245–267

    Article  Google Scholar 

  • Takla MA, Noweir MA (1980) Mineralogy and mineral chemistry of the ultramafic mass of El-Rubshi, Eastern Desert, Egypt. Neues Jb Mineral Abh 140(1):17–28

    Google Scholar 

  • Thompson RN (1982) British Tertiary volcanic provenance. Scott J Geol 18:49–107

    Article  Google Scholar 

  • Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268:858–861

    Article  Google Scholar 

  • Varfalvy V, Hébert R, Bédard JH, Lafléche MR (1997) Petrology and geochemistry of pyroxenite dykes in upper mantle peridotites of the North Arm Mountain Massif, Bay of Islands ophiolite, Newoundland: implications for the genesis of boninitic and related magmas. Can Mineral 35:543–570

    Google Scholar 

  • Winter JD (2001) An introduction to igneous and metamorphic petrology. Prentice Hall

  • Wood DA (1980) The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth Planet Sci Lett 50:11–30

    Article  Google Scholar 

  • Zakrutkin V (1968) The evolution of amphibolites during metamorphism. Vsesoyuzone (USSR), Mineralogicheskoe obschestov, Zapiski (Verhandlungen) 97:13–23

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed E. Khalil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Desoky, H.M., Khalil, A.E. & Salem, A.K.A. Ultramafic rocks in Gabal El-Rubshi, Central Eastern Desert, Egypt: petrography, mineral chemistry, and geochemistry constraints. Arab J Geosci 8, 2607–2631 (2015). https://doi.org/10.1007/s12517-014-1407-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-014-1407-x

Keywords

Navigation