Skip to main content
Log in

Myocardial Salvage Imaging: Where Are We and Where Are We Heading? A Cardiac Magnetic Resonance Perspective

  • Cardiac Magnetic Resonance (E Nagel and V Puntmann, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cardiac magnetic resonance (CMR) has emerged in recent years as a reliable tool to assess, in a single examination after a reperfused myocardial infarction, the initially area at risk (AAR), the final infarct size (IS), and from their difference the salvaged myocardium (SM). The aim of the present review is to summarize recent advances in the CMR imaging of SM.

Recent Findings

While there is consensus on the use of late gadolinium enhancement (LGE) to calculate IS, how to assess the AAR is a debated topic. The use of T2-weighted short-TI inversion recovery (T2W-STIR) is to date supported by a large amount of data, but it is affected by several limitations. Newer techniques have been developed to overcome T2W-STIR limitations, some of them have been already used in randomized clinical trials (RCTs) while others are showing promising results. The use of CMR to generate surrogate endpoints in RCTs is gaining attention; in this context, analysis of data from recent RCTs suggests that the assessment of SM as outcome measure could be useful to reduce sample sizes and costs of trials.

Summary

CMR is a reliable technique for the assessment of SM. LGE is the gold standard for IS measurement, while which is the best technique for the evaluation of AAR is still debated. When using CMR-derived endpoints in RCTs, the assessment of SM is advisable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance ••Of major importance

  1. Reimer KA, Jennings RB. The "wavefront phenomenon" of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Investig. 1979;40(6):633–44.

    CAS  PubMed  Google Scholar 

  2. Reimer KA, Lowe JE, Rasmussen MM, Jennings RB. The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation. 1977;56(5):786–94.

    Article  CAS  PubMed  Google Scholar 

  3. Przyklenk K, Vivaldi MT, Schoen FJ, Malcolm J, Arnold O, Kloner RA. Salvage of ischaemic myocardium by reperfusion: importance of collateral blood flow and myocardial oxygen demand during occlusion. Cardiovasc Res. 1986;20(6):403–14.

    Article  CAS  PubMed  Google Scholar 

  4. Maroko PR, Kjekshus JK, Sobel BE, Watanabe T, Covell JW, Ross J, et al. Factors influencing infarct size following experimental coronary artery occlusions. Circulation. 1971;43(1):67–82.

    Article  CAS  PubMed  Google Scholar 

  5. Botker HE, Kaltoft AK, Pedersen SF, Kim WY. Measuring myocardial salvage. Cardiovasc Res. 2012;94(2):266–75.

    Article  CAS  PubMed  Google Scholar 

  6. Schelbert EB, Wong TC. Imaging the area at risk in myocardial infarction with cardiovascular magnetic resonance. J Am Heart Assoc. 2014;3(4):e001253.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kaltoft A, Bøttcher M, Nielsen SS, Hansen HHT, Terkelsen C, Maeng M, et al. Routine thrombectomy in percutaneous coronary intervention for acute ST-segment-elevation myocardial infarction: a randomized, controlled trial. Circulation. 2006;114(1):40–7.

    Article  PubMed  Google Scholar 

  8. Kaltoft A, Nielsen SS, Terkelsen CJ, Bøttcher M, Lassen JF, Krusell LR, et al. Scintigraphic evaluation of routine filterwire distal protection in percutaneous coronary intervention for acute ST-segment elevation myocardial infarction: a randomized controlled trial. J Nucl Cardiol. 2009;16(5):784–91.

    Article  PubMed  Google Scholar 

  9. Medrano R, Lowry RW, Young JB, Weilbaecher DG, Michael LH, Afridi I, et al. Assessment of myocardial viability with 99mTc sestamibi in patients undergoing cardiac transplantation. A scintigraphic/pathological study. Circulation. 1996;94(5):1010–7.

    Article  CAS  PubMed  Google Scholar 

  10. Kristensen J, Mortensen UM, Nielsen SS, Maeng M, Kaltoft A, Nielsen TT, et al. Myocardial perfusion imaging with 99mTc sestamibi early after reperfusion reliably reflects infarct size reduction by ischaemic preconditioning in an experimental porcine model. Nucl Med Commun. 2004;25(5):495–500.

    Article  PubMed  Google Scholar 

  11. Friedrich MG, Abdel-Aty H, Taylor A, Schulz-Menger J, Messroghli D, Dietz R. The salvaged area at risk in reperfused acute myocardial infarction as visualized by cardiovascular magnetic resonance. J Am Coll Cardiol. 2008;51(16):1581–7.

    Article  PubMed  Google Scholar 

  12. Francone M, Bucciarelli-Ducci C, Carbone I, Canali E, Scardala R, Calabrese FA, et al. Impact of primary coronary angioplasty delay on myocardial salvage, infarct size, and microvascular damage in patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2009;54(23):2145–53. 42

    Article  PubMed  Google Scholar 

  13. Masci PG, Andreini D, Francone M, Bertella E, De Luca L, Coceani M, et al. Prodromal angina is associated with myocardial salvage in acute ST-segment elevation myocardial infarction. Eur Heart J - Cardiovasc Imaging. 2013;14(11):1041–8.

    Article  PubMed  Google Scholar 

  14. Canali E, Masci P, Bogaert J, Bucciarelli-Ducci C, Francone M, McAlindon E, et al. Impact of gender differences on myocardial salvage and post-ischaemic left ventricular remodelling after primary coronary angioplasty: new insights from cardiovascular magnetic resonance. Eur Heart J - Cardiovasc Imaging. 2012;13(11):948–53.

    Article  PubMed  Google Scholar 

  15. Arcari L, Cimino S, De Luca L, Francone M, Galea N, Reali M, et al. Impact of heart rate on myocardial salvage in timely reperfused patients with ST-segment elevation myocardial infarction: new insights from cardiovascular magnetic resonance. PLoS One. 2015;10(12):e0145495.

    Article  PubMed  PubMed Central  Google Scholar 

  16. •• Engblom H, Heiberg E, Erlinge D, Jensen SE, Nordrehaug JE, Dubois-Randé J, et al. Sample size in clinical cardioprotection trials using myocardial salvage index, infarct size, or biochemical markers as endpoint. J Am Heart Assoc. 2016;5(3):e002708. This study provides a statistical simulation based on data from two recent RCTs in which SM was used as outcome measure. Results from this research demonstrated the possible impact in term of reduction of sample size thanks to the use of SM rather than IS alone as outcome measure

    Article  PubMed  PubMed Central  Google Scholar 

  17. Croisille P, Kim HW, Kim RJ. Controversies in cardiovascular MR imaging: T2-weighted imaging should not be used to delineate the area at risk in ischemic myocardial injury. Radiology. 2012;265(1):12–22.

    Article  PubMed  Google Scholar 

  18. Arai AE, Leung S, Kellman P. Controversies in cardiovascular MR imaging: reasons why imaging myocardial T2 has clinical and pathophysiologic value in acute myocardial infarction. Radiology. 2012;265(1):23–32.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Aletras AH, Tilak GS, Natanzon A, Hsu L-Y, Gonzalez FM, Hoyt RF, et al. Retrospective determination of the area at risk for reperfused acute myocardial infarction with T2-weighted cardiac magnetic resonance imaging: histopathological and displacement encoding with stimulated echoes (DENSE) functional validations. Circulation. 2006;113:1865–70.

    Article  PubMed  Google Scholar 

  20. Eitel I, Friedrich MG. T2-weighted cardiovascular magnetic resonance in acute cardiac disease. J Cardiovasc Magn Reson. 2011;13(1):13.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Carlsson M, Ubachs JFA, Hedström E, Heiberg E, Jovinge S, Arheden H. Myocardium at risk after acute infarction in humans on cardiac magnetic resonance. J Am Coll Cardiol Img. 2009;2(5):569–76.

    Article  Google Scholar 

  22. Eitel I, Desch S, Fuernau G, Hildebrand L, Gutberlet M, Schuler G, et al. Prognostic significance and determinants of myocardial salvage assessed by cardiovascular magnetic resonance in acute reperfused myocardial infarction. J Am Coll Cardiol. 2010;55(22):2470–9.

    Article  PubMed  Google Scholar 

  23. Choi SI, Jiang CZ, Lim KH, Kim ST, Lim CH, Gong GY, et al. Application of breath-hold T2-weighted, first-pass perfusion and gadolinium-enhanced T1-weighted MR imaging for assessment of myocardial viability in a pig model. J Magn Reson Imaging. 2000;11(5):476–80.

    Article  CAS  PubMed  Google Scholar 

  24. Raman SV, Simonetti OP, Winner MW, Dickerson JA, He X, Mazzaferri EL, et al. Cardiac magnetic resonance with edema imaging identifies myocardium at risk and predicts worse outcome in patients with non–ST-segment elevation acute coronary syndrome. J Am Coll Cardiol. 2010;55(22):2480–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Masci PG, Ganame J, Strata E, Desmet W, Aquaro GD, Dymarkowski S, et al. Myocardial salvage by CMR correlates with LV remodeling and early ST-segment resolution in acute myocardial infarction. J Am Coll Cardiol Img. 2010;3(1):45–51.

    Article  Google Scholar 

  26. Eitel I, Desch S, de Waha S, Fuernau G, Gutberlet M, Schuler G, et al. Long-term prognostic value of myocardial salvage assessed by cardiovascular magnetic resonance in acute reperfused myocardial infarction. Heart. 2011;97(24):2038–45.

    Article  PubMed  Google Scholar 

  27. • McAlindon EJ, Pufulete M, Harris JM, Lawton CB, Moon JC, Manghat N, et al. Measurement of myocardium at risk with cardiovascular MR: comparison of techniques for edema imaging. Radiology. 2015;275(1):61–70. This study provides an interesting comparison between different techniques for AAR assessment. Variability between different operators and different scans in the same patient were tested. Finally, T2 mapping emerged as the technique with the lower variability.

    Article  PubMed  Google Scholar 

  28. Abdel-Aty H, Simonetti O, Friedrich MG. T2-weighted cardiovascular magnetic resonance imaging. J Magn Reson Imaging. 2007;26:452–9. https://doi.org/10.1002/jmri.21028.

    Article  PubMed  Google Scholar 

  29. Nordlund D, Klug G, Heiberg E, Koul S, Larsen TH, Hoffmann P, et al. Multi-vendor, multicentre comparison of contrast-enhanced SSFP and T2-STIR CMR for determining myocardium at risk in ST-elevation myocardial infarction. Eur Heart J – Cardiovasc Imaging. 2016 Jul;17(7):744–53.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hadamitzky M, Langhans B, Hausleiter J, Sonne C, Kastrati A, Martinoff S, et al. The assessment of area at risk and myocardial salvage after coronary revascularization in acute myocardial infarction. J Am Coll Cardiol Img. 2013;6(3):358–69.

    Article  Google Scholar 

  31. • McAlindon E, Pufulete M, Lawton C, Angelini GD, Bucciarelli-Ducci C. Quantification of infarct size and myocardium at risk: evaluation of different techniques and its implications. Eur Heart J - Cardiovasc Imaging. 2015;16(7):738–46. This research compared different methods for the measurement of AAR and IS from T2W-STIR and LGE images. Results suggested that, performed in expert hands, manual contouring provides the lowest variability for quantification of AAR and IS. This finding is of relevance in the search of a more standardized protocol for image interpretation in SM assessment.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Giri S, Chung YC, Merchant A, Mihai G, Rajagopalan S, Raman SV, et al. T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson. 2009;11(1):56.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ugander M, Bagi PS, Oki AJ, Chen B, Hsu LY, Aletras AH, et al. Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. J Am Coll Cardiol Img. 2012;5(6):596–603.

    Article  Google Scholar 

  34. Langhans B, Nadjiri J, Jähnichen C, Kastrati A, Martinoff S, Hadamitzky M. Reproducibility of area at risk assessment in acute myocardial infarction by T1- and T2-mapping sequences in cardiac magnetic resonance imaging in comparison to Tc99m-sestamibi SPECT. Int J Cardiovasc Imaging. 2014;30(7):1357–63.

    Article  PubMed  Google Scholar 

  35. Verhaert D, Thavendiranathan P, Giri S, Mihai G, Rajagopalan S, Simonetti OP, et al. Direct T2 quantification of myocardial edema in acute ischemic injury. J Am Coll Cardiol Img. 2011;4(3):269–78.

    Article  Google Scholar 

  36. •• Liu D, Borlotti A, Viliani D, Jerosch-Herold M, Alkhalil M, De Maria GL, et al. CMR Native T1 mapping allows differentiation of reversible versus irreversible myocardial damage in ST-segment-elevation myocardial infarction: an OxAMI study (Oxford acute myocardial infarction). Circulation. Cardiovascular imaging. 2017;10(8):e005986. This innovative study demonstrated the ability of native T1 mapping to assess AAR and IS and to provide prognostic information after a myocardial infarction. The tested protocol does not require the administration of contrast media and shortens the duration of the CMR examination. Further studies are needed to confirm and strengthen these recent findings.

    Article  PubMed  PubMed Central  Google Scholar 

  37. White SK, Frohlich GM, Sado DM, Maestrini V, Fontana M, Treibel TA, et al. Remote ischemic conditioning reduces myocardial infarct size and edema in patients with ST-segment elevation myocardial infarction. JACC Cardiovasc interv. 2015;8(1 Pt B):178–88.

    Article  PubMed  Google Scholar 

  38. Caravan P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev. 2006;35(6):512–23.

    Article  CAS  PubMed  Google Scholar 

  39. Sörensson P, Heiberg E, Saleh N, Bouvier F, Caidahl K, Tornvall P, et al. Assessment of myocardium at risk with contrast enhanced steady-state free precession cine cardiovascular magnetic resonance compared to single-photon emission computed tomography. J Cardiovasc Magn Reson. 2010;12(1):25.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Arheden H, Saeed M, Higgins CB, Gao DW, Bremerich J, Wyttenbach R, et al. Measurement of the distribution volume of gadopentetate dimeglumine at echo-planar MR imaging to quantify myocardial infarction: comparison with 99m Tc-DTPA autoradiography in rats. Radiology. 1999;211(3):698–708.

    Article  CAS  PubMed  Google Scholar 

  41. Arheden H, Saeed M, Higgins CB, Gao DW, Ursell PC, Bremerich J, et al. Reperfused rat myocardium subjected to various durations of ischemia: estimation of the distribution volume of contrast material with Echo-planar MR imaging. Radiology. 2000;215(2):520–8.

    Article  CAS  PubMed  Google Scholar 

  42. Ubachs JFA, Sörensson P, Engblom H, Carlsson M, Jovinge S, Pernow J, et al. Myocardium at risk by magnetic resonance imaging: head-to-head comparison of T2-weighted imaging and contrast-enhanced steady-state free precession. Eur Heart J - Cardiovasc Imaging. 2012 Dec;13(12):1008–15.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Erlinge D, Götberg M, Lang I, Holzer M, Noc M, Clemmensen P, et al. Rapid endovascular catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction. J Am Coll Cardiol. 2014;63(18):1857–65.

    Article  PubMed  Google Scholar 

  44. Atar D, Arheden H, Berdeaux A, Bonnet JL, Carlsson M, Clemmensen P, et al. Effect of intravenous TRO40303 as an adjunct to primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: MITOCARE study results. Eur Heart J. 2015;36(2):112–9.

    Article  CAS  PubMed  Google Scholar 

  45. Bulluck H, White SK, Rosmini S, Bhuva A, Treibel TA, Fontana M, et al. T1 mapping and T2 mapping at 3T for quantifying the area-at-risk in reperfused STEMI patients. J Cardiovasc Magn Reson. 2015;17(1):73.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bulluck H, Hammond-Haley M, Fontana M, Knight DS, Sirker A, Herrey AS, et al. Quantification of both the area-at-risk and acute myocardial infarct size in ST-segment elevation myocardial infarction using T1-mapping. J Cardiovasc Magn Reson. 2017;19(1):57.

    Article  PubMed  PubMed Central  Google Scholar 

  47. • Garg P, Broadbent DA, Swoboda PP, Foley JRJ, Fent GJ, Musa TA, et al. Acute infarct extracellular volume mapping to quantify myocardial area at risk and chronic infarct size on cardiovascular magnetic resonance imaging. Circulation. Cardiovascular imaging. 2017;10(7):e006182. This innovative study explored the potential role of extracellular volume mapping in the assessment of AAR and IS, and in the prediction of myocardial viability at follow-up; further studies with larger sample sizes are needed to strenghten this result.

    Article  PubMed  Google Scholar 

  48. Matsumoto H, Matsuda T, Miyamoto K, Shimada T, Mikuri M, Hiraoka Y. Peri-infarct zone on early contrast-enhanced CMR imaging in patients with acute myocardial infarction. JACC Cardiovasc Imaging. 2011;4(6):610–8.

    Article  PubMed  Google Scholar 

  49. Payne AR, Casey M, McClure J, McGeoch R, Murphy A, Woodward R, et al. Bright-blood T2-weighted MRI has higher diagnostic accuracy than dark-blood short tau inversion recovery MRI for detection of acute myocardial infarction and for assessment of the ischemic area at risk and myocardial salvage. Circ Cardiovasc Imaging. 2011;4(3):210–9.

    Article  PubMed  Google Scholar 

  50. Versteylen MO, Bekkers SCAM, Smulders MW, Winkens B, Mihl C, Winkens MHM, et al. Performance of angiographic, electrocardiographic and MRI methods to assess the area at risk in acute myocardial infarction. Heart. 2012;98(2):109–15.

    Article  PubMed  Google Scholar 

  51. Fuernau G, Eitel I, Franke V, Hildebrandt L, Meissner J, de Waha S, et al. Myocardium at risk in ST-segment elevation myocardial infarction. J Am Coll Cardiol Img. 2011;4(9):967–76.

    Article  Google Scholar 

  52. Arai AE. Magnetic resonance imaging for area at risk, myocardial infarction, and myocardial salvage. J Cardiovasc Pharmacol Ther 2011.

  53. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100(19):1992–2002.

    Article  CAS  PubMed  Google Scholar 

  54. Fieno DS, Kim RJ, Chen EL, Lomasney JW, Klocke FJ, Judd RM. Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol. 2000;36(6):1985–91.

    Article  CAS  PubMed  Google Scholar 

  55. Schelbert EB, Hsu LY, Anderson SA, Mohanty BD, Karim SM, Kellman P, et al. Late gadolinium-enhancement cardiac magnetic resonance identifies postinfarction myocardial fibrosis and the border zone at the near cellular level in ex vivo rat heart. Circ Cardiovasc Imaging. 2010;3(6):743–52.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dall'Armellina E, Karia N, Lindsay AC, Karamitsos TD, Ferreira V, Robson MD, et al. Dynamic changes of edema and late gadolinium enhancement after acute myocardial infarction and their relationship to functional recovery and salvage index. Circulation Cardiovascular imaging. 2011;4(3):228–36.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Stone GW, Selker HP, Thiele H, Patel MR, Udelson JE, Ohman EM, et al. Relationship between infarct size and outcomes following primary PCI: patient-level analysis from 10 randomized trials. J Am Coll Cardiol. 2016;67(14):1674–83.

    Article  PubMed  Google Scholar 

  58. Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) Board of Trustees Task Force on standardized post processing. J Cardiovasc Magn Reson. 2013;15(1):35.

    Article  PubMed  PubMed Central  Google Scholar 

  59. • Bulluck H, Hammond-Haley M, Weinmann S, Martinez-Macias R, Hausenloy DJ. Myocardial infarct size by CMR in clinical cardioprotection studies. JACC Cardiovasc Imaging. 2017;10(3):230–40. This study represents an overview on the use of infarct size as outcome measure in RCTs. Recommendations for standardization and sample size calculation are also provided.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Carrick D, Haig C, Ahmed N, Rauhalammi S, Clerfond G, Carberry J, et al. Temporal evolution of myocardial hemorrhage and edema in patients after acute ST-segment elevation myocardial infarction: pathophysiological insights and clinical implications. J Am Heart Assoc. 2016;5(2):e002834.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Stiermaier T, Thiele H, Eitel I. Early myocardial edema after acute myocardial infarction is stable and not bimodal in humans - evidence from a large CMR multicenter study. Int J Cardiol. 2017;246:87–9.

    Article  PubMed  Google Scholar 

  62. Hammer-Hansen S, Ugander M, Hsu LY, Taylor J, Thune JJ, Kober L, et al. Distinction of salvaged and infarcted myocardium within the ischaemic area-at-risk with T2 mapping. European Heart Journal - Cardiovascular Imaging. 2014;15(9):1048–53.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Desch S, Eitel I, de Waha S, Fuernau G, Lurz P, Gutberlet M, et al. Cardiac magnetic resonance imaging parameters as surrogate endpoints in clinical trials of acute myocardial infarction. Trials. 2011;12(1):204.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bainey KR, Patel MR, Armstrong PW. Evaluation of cardiac magnetic resonance as a surrogate in ST-segment elevation myocardial infarction. Am J Cardiol. 2015;115(11):1607–14.

    Article  PubMed  Google Scholar 

  65. Wu E, Ortiz JT, Tejedor P, Lee DC, Bucciarelli-Ducci C, Kansal P, et al. Infarct size by contrast enhanced cardiac magnetic resonance is a stronger predictor of outcomes than left ventricular ejection fraction or end-systolic volume index: prospective cohort study. Heart. 2008;94(6):730–6.

    Article  CAS  PubMed  Google Scholar 

  66. Reimer KA, Jennings RB, Cobb FR, Murdock RH, Greenfield JC, Becker LC, et al. Animal models for protecting ischemic myocardium: results of the NHLBI cooperative study. Comparison of unconscious and conscious dog models. Circ Res. 1985;56(5):651–65.

    Article  CAS  PubMed  Google Scholar 

  67. Masci PG, Ganame J, Francone M, Desmet W, Lorenzoni V, Iacucci I, et al. Relationship between location and size of myocardial infarction and their reciprocal influences on post-infarction left ventricular remodelling. Eur Heart J. 2011;32(13):1640–8.

    Article  PubMed  Google Scholar 

  68. Ortiz-Pérez JT, Meyers SN, Lee DC, Kansal P, Klocke FJ, Holly TA, et al. Angiographic estimates of myocardium at risk during acute myocardial infarction: validation study using cardiac magnetic resonance imaging. Eur Heart J. 2007;28(14):1750–8.

    Article  PubMed  Google Scholar 

  69. Eitel I, Stiermaier T, Rommel KP, Fuernau G, Sandri M, Mangner N, et al. Cardioprotection by combined intrahospital remote ischaemic perconditioning and postconditioning in ST-elevation myocardial infarction: the randomized LIPSIA CONDITIONING trial. Eur Heart J. 2015;36(44):3049–57.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Arcari.

Ethics declarations

Conflict of Interest

Chiara Bucciarelli-Ducci reports personal fees from Circle Cardiovascular Imaging, outside of the submitted work.

Marco Francone reports personal fees from Bracco Speaker Bureau, outside of the submitted work.

The other authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardiac Magnetic Resonance

Electronic supplementary material

ESM 1

(DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arcari, L., Bucciarelli-Ducci, C., Francone, M. et al. Myocardial Salvage Imaging: Where Are We and Where Are We Heading? A Cardiac Magnetic Resonance Perspective. Curr Cardiovasc Imaging Rep 11, 8 (2018). https://doi.org/10.1007/s12410-018-9448-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-018-9448-2

Keywords

Navigation