Skip to main content

Advertisement

Log in

The Role of Radionuclide Imaging in Congenital Heart Disease

  • Cardiac Nuclear Imaging (Alberto Cuocolo and Mario Petretta)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Congenital heart disease is a growing healthcare issue since the majority of children who underwent surgical repair are now surviving into adult life. However, these patients are generally fixed but not cured and many will go on to develop significant morbidity as adults. The purpose of this review is to discuss the utility of radionuclide imaging in the management of these patients with a focus on the longer-term follow-up into adult life.

Recent Findings

Radionuclide imaging is a relatively niche tool in the management of congenital heart disease patients and many of the techniques have been around for decades. What is new is the application of techniques such as fluorodeoxyglucose (FDG) imaging for endocarditis and device infection using anatomic colocalization by MR-PET or PET-CT. There is also growing interest in the quantitative assessment of coronary blood flow with tracers such as rubidium that are available without the need for a cyclotron on site. This is likely to be very useful in the management of patients with coronary anomalies or surgically re-implanted coronary arteries.

Summary

Radionuclide imaging has specific but rather limited application to congenital heart disease at the current time. With the development of new molecular imaging agents, low-dose protocols, and the wider availability of hybrid imaging modalities, we suggest that the ground is prepared for a resurgence of interest in the application of these techniques to the population of patients living with congenital heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Marelli AJ, Mackie AS, Ionescu-Ittu R, Rahme E, Pilote L. Congenital heart disease in the general population: changing prevalence and age distribution. Circulation. 2007;115(2):163–72. This paper was an epidemiologic study using administrative databases to identify the prevalence of congenital heart disease in both pediatric and adult age groups. The data showed that at the start of the 21st century, the prevalence and severity of CHD had increased over a period of 15 years from 1985 to 2000. Furthermore, the increases were greatest in the adult population and by year 2000, there were an almost equal number of adults and children alive with severe CHD.

    Article  PubMed  Google Scholar 

  2. •• Afilalo J, Therrien J, Pilote L, Ionescu-Ittu R, Martucci G, Marelli AJ. Geriatric congenital heart disease: burden of disease and predictors of mortality. J Am Coll Cardiol. 2011;58(14):1509–15. This was a population-based cohort study focusing on patients aged 65 or more in age at entry and followed for 15 years. The majority of geriatric CHD patients did not have severe congenital lesions but developed increasing morbidity from the usual diseases of older age including dementia and atherosclerosis—and it was these things rather than their original congenital diagnosis which usually determined their mortality.

    Article  PubMed  Google Scholar 

  3. Ntiloudi D, Giannakoulas G, Parcharidou D, Panagiotidis T, Gatzoulis MA, Karvounis H. Adult congenital heart disease: a paradigm of epidemiological change. Int J Cardiol. 2016;218:269–74.

    Article  PubMed  Google Scholar 

  4. • Deva DP, Torres FS, Wald RM, Roche SL, Jimenez-Juan L, Oechslin EN, et al. The value of stress perfusion cardiovascular magnetic resonance imaging for patients referred from the adult congenital heart disease clinic: 5-year experience at the Toronto General Hospital. Cardiol Young. 2014;24(5):822–30. This is currently the largest published experience of using stress perfusion CMR to guide the management of patients seen in one of the biggest centers for adult congenital heart disease in the world.

    Article  PubMed  Google Scholar 

  5. Crean A. Cardiovascular MR and CT in congenital heart disease. Heart. 2007;93(12):1637–47.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Partington SL, Valente AM, Bruyere J, Landzberg M, Di Carli M, Grant F, et al. Diagnostic value of tc99m SPECT myocardial perfusion imaging in complex congenital heart disease. J Am Coll Cardiol. 2014;63(12):A1122.

    Article  Google Scholar 

  7. • Angelini P, Velasco JA, Flamm S. Coronary anomalies: incidence, pathophysiology, and clinical relevance. Circulation. 2002;105(20):2449–54. A highly recommended overview of the sometimes confusing nomenclature and pathophysiology surrounding congenital coronary anomalies from an author who has perhaps the greatest experience in the world of these lesions.

    Article  PubMed  Google Scholar 

  8. Angelini P, Uribe C, Monge J, Tobis JM, Elayda MA, Willerson JT. Origin of the right coronary artery from the opposite sinus of Valsalva in adults: characterization by intravascular ultrasonography at baseline and after stent angioplasty. Catheter Cardiovasc Interv. 2015;86(2):199–208.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Frescura C, Basso C, Thiene G, Corrado D, Pennelli T, Angelini A, et al. Anomalous origin of coronary arteries and risk of sudden death: a study based on an autopsy population of congenital heart disease. Hum Pathol. 1998;29(7):689–95.

    Article  CAS  PubMed  Google Scholar 

  10. Basso C, Maron BJ, Corrado D, Thiene G. Clinical profile of congenital coronary artery anomalies with origin from the wrong aortic sinus leading to sudden death in young competitive athletes. J Am Coll Cardiol. 2000;35(6):1493–501.

    Article  CAS  PubMed  Google Scholar 

  11. Taylor AJ, Rogan KM, Virmani R. Sudden cardiac death associated with isolated congenital coronary artery anomalies. J Am Coll Cardiol. 1992;20(3):640–7.

    Article  CAS  PubMed  Google Scholar 

  12. Frommelt PC. Congenital coronary artery abnormalities predisposing to sudden cardiac death. Pacing Clin Electrophysiol. 2009;32(Suppl 2):S63–6.

    Article  PubMed  Google Scholar 

  13. Taylor AJ, Byers JP, Cheitlin MD, Virmani R. Anomalous right or left coronary artery from the contralateral coronary sinus: “high-risk” abnormalities in the initial coronary artery course and heterogeneous clinical outcomes. Am Heart J. 1997;133(4):428–35.

    Article  CAS  PubMed  Google Scholar 

  14. Lee BY. Anomalous right coronary artery from the left coronary sinus with an interarterial course: is it really dangerous? Korean Circ J. 2009;39(5):175–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. De Luca L, Bovenzi F, Rubini D, Niccoli-Asabella A, Rubini G, De Luca I. Stress-rest myocardial perfusion SPECT for functional assessment of coronary arteries with anomalous origin or course. J Nucl Med. 2004;45(4):532–6.

    PubMed  Google Scholar 

  16. Chu E, Cheitlin MD. Diagnostic considerations in patients with suspected coronary artery anomalies. Am Heart J. 1993;126(6):1427–38.

    Article  CAS  PubMed  Google Scholar 

  17. Dimopoulos K, Di Mario C, Barlis P, Pennell D, Goktekin O, Kaddoura S, et al. Haemodynamic significance of an anomalous right coronary with inter-arterial course assessed with intracoronary pressure measurements during dobutamine challenge. Int J Cardiol. 2008;126(2):e32–5.

    Article  PubMed  Google Scholar 

  18. Moustafa SE, Zehr K, Mookadam M, Lorenz EC, Mookadam F. Anomalous interarterial left coronary artery: an evidence based systematic overview. Int J Cardiol. 2008;126(1):13–20.

    Article  PubMed  Google Scholar 

  19. Keir M, Spears D, Caldarone C, Crean AM. Proving the innocence of a “malignant” coronary artery: calling dobutamine stress CT for the defence! J Cardiovasc Comput Tomogr. 2017;11(1):68–9.

    Article  PubMed  Google Scholar 

  20. Lachaud M, Cahouch Z, Le Gloan L, Guerin P. An unusual cause of myocardial ischemia. Eur Heart J. 2016;38(11):837.

    Google Scholar 

  21. Gangadharan V, Sivagnanam K, Murtaza G, Ponders M, Teixeira O, Paul T. Anomalous origin of the left coronary artery from the pulmonary artery: an uncommon coronary anomaly with serious implications in adulthood. J Investig Med High Impact Case Rep. 2017;5(1):2324709616684629.

    PubMed  PubMed Central  Google Scholar 

  22. Martínez-Rodríguez I, Banzo I, Quirce R, Jiménez-Bonilla JF, Medina-Quiroz P, Rubio-Vassallo AS, et al. F-18 FDG PET/CT uptake by a cardiac hemangioma. Clin Nucl Med. 2010;35(5):330–1.

    Article  PubMed  Google Scholar 

  23. Mazurak M, Kusa J. The radiologist’s tragedy, or bland-white-garland syndrome (BWGS). On the 80(th) anniversary of the first clinical description of ALCAPA (anomalous left coronary artery from the pulmonary artery). Kardiochir Torakochirurgia Pol. 2014;11(2):225–9.

    PubMed  PubMed Central  Google Scholar 

  24. Sfakianakis GN, Damoulaki-Sfakianaki E, McClead RE, Craenen J. Anomalous origin of left coronary artery diagnosed by a lung scan. N Engl J Med. 1977;296(12):675–6.

    Article  CAS  PubMed  Google Scholar 

  25. Rubini G, Ettorre GC, Sebastiani M, Bovenzi F. Evaluation of hemodynamic significance of arteriovenous coronary fistulas: diagnostic integration of coronary angiography and stress/rest myocardial scintigraphy. Radiol Med. 2000;100(6):453–8.

    CAS  PubMed  Google Scholar 

  26. Katsuragi M, Yamamoto K, Tashiro T, Nishihara H, Toudou K. Thallium-201 myocardial SPECT in bland-white-garland syndrome: two adult patients with inferoposterior perfusion defect. J Nucl Med. 1993;34(12):2182–4.

    CAS  PubMed  Google Scholar 

  27. Elhendy A, Zoet-Nugteren S, Cornel JH, Fioretti PM, Bogers AJ, Roelandt JR, et al. Functional assessment of ALCAPA syndrome by dobutamine stress thallium-201 SPECT and echocardiography. J Nucl Med. 1996;37(5):748–51.

    CAS  PubMed  Google Scholar 

  28. Anguenot TJ, Bernard YF, Cardot JC, Boumal D, Bassand JP, Maurat JP. Isotopic findings in anomalous origin of the left coronary artery from the pulmonary artery: report of an adult case. J Nucl Med. 1991;32(9):1788–90.

    CAS  PubMed  Google Scholar 

  29. Alsara O, Kalavakunta JK, Hajjar V, Alsarah A, Cho N, Dhar G. Surviving sudden cardiac death secondary to anomalous left coronary artery from the pulmonary artery: a case report and literature review. Heart Lung. 2014;43(5):476–80.

    Article  PubMed  Google Scholar 

  30. Sinha SK, Khanra D, Jha MJ, Singh K, Razi M, Goel A, et al. Unusual survival of anomalous left coronary artery from the pulmonary artery with severe rheumatic mitral stenosis in septuagenarian women: foes becoming friends? J Clin Med Res. 2016;8(10):760–3.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ishida N, Shimabukuro K, Ogura H, Takemura H, Doi K. Coronary artery bypass grafting for an anomalous left coronary artery from the pulmonary artery in a 73-year-old female. J Card Surg. 2016;31(6):380–2.

    Article  PubMed  Google Scholar 

  32. Abdallah H, Bouhout I, St-Onge S, Mongeon F-P, Demers P. Surgical treatment of an anomalous left coronary artery from the pulmonary artery in a sexagenarian woman. Can J Cardiol. 2016;32(12):1576.e1–3.

    Article  Google Scholar 

  33. Juan Y-H, Saboo SS, Keraliya A, Khandelwal A. Coronary strictures, intraluminal thrombus and aneurysms: unreported imaging appearance of ALCAPA syndrome post Takeuchi procedure. Int J Cardiol. 2015;186:291–3.

    Article  PubMed  Google Scholar 

  34. Ginde S, Earing MG, Bartz PJ, Cava JR, Tweddell JS. Late complications after Takeuchi repair of anomalous left coronary artery from the pulmonary artery: case series and review of literature. Pediatr Cardiol. 2012;33(7):1115–23.

    Article  PubMed  Google Scholar 

  35. Schmitt B, Bauer S, Kutty S, Nordmeyer S, Nasseri B, Berger F, et al. Myocardial perfusion, scarring, and function in anomalous left coronary artery from the pulmonary artery syndrome: a long-term analysis using magnetic resonance imaging. Ann Thorac Surg. 2014;98(4):1425–36.

    Article  PubMed  Google Scholar 

  36. Singh TP, Di Carli MF, Sullivan NM, Leonen MF, Morrow WR. Myocardial flow reserve in long-term survivors of repair of anomalous left coronary artery from pulmonary artery. J Am Coll Cardiol. 1998;31(2):437–43.

    Article  CAS  PubMed  Google Scholar 

  37. Durand M, Nguyen ET, Crean AM. Anomalous left coronary artery arising from the pulmonary artery. Cardiovasc J Afr. 2012 Sep;23(8):e9–10.

    Article  CAS  PubMed  Google Scholar 

  38. Parasramka S, Dufresne A. Anomalous origin of right coronary artery from pulmonary artery presenting as chest pain in a young man. J Cardiol Cases. 2012;5(1):e20–2.

    Article  Google Scholar 

  39. Rahman MS, Mittal T, Chandrasekaran V, Chua TP. The role of multi-modality imaging to investigate and manage anomalous right coronary artery originating from the pulmonary artery (ARCAPA) anomaly with associated coronary aneurysms presenting as acute left ventricular failure. Eur Heart J. 2015;36(43):3031.

    Article  PubMed  Google Scholar 

  40. Arqué Gibernau JM, Arias Recalde A, Bravo Marqués R. ARCAPA syndrome in adulthood. Rev Esp Cardiol (Engl Ed). 2017; https://doi.org/10.1016/j.rec.2016.11.020

  41. Yao C-T, Wang J-N, Yeh C-N, Huang S-C, Yang Y-R, Wu J-M. Isolated anomalous origin of right coronary artery from the main pulmonary artery. J Card Surg. 2005;20(5):487–9.

    Article  PubMed  Google Scholar 

  42. Guven B, Doksoz O, Ozdemir R, Mese T, Genc B. Anomalous origin of the right coronary artery from the pulmonary artery in a child with chest pain. Echocardiography. 2013;30(7):E222–3.

    Article  PubMed  Google Scholar 

  43. Contreras AE, Leonardi C, Lazzarin O, Bagur R, Peirone A. Anomalous origin of the right coronary artery from the pulmonary artery diagnosed as an incidental finding. Congenit Heart Dis. 2013;8(2):E52–5.

    Article  PubMed  Google Scholar 

  44. Gallo M, Rizzati F, Padalino M, Stellin G. Anomalous origin of right coronary artery from pulmonary artery with aneurysmal coronary arteries. Cor Vasa. 2016;58(5):e515–7.

    Article  Google Scholar 

  45. Legendre A, Losay J, Touchot-Koné A, Serraf A, Belli E, Piot JD, et al. Coronary events after arterial switch operation for transposition of the great arteries. Circulation. 2003;108(Suppl 1):II186–90.

    PubMed  Google Scholar 

  46. Tobler D, Williams WG, Jegatheeswaran A, Van Arsdell GS, McCrindle BW, Greutmann M, et al. Cardiac outcomes in young adult survivors of the arterial switch operation for transposition of the great arteries. J Am Coll Cardiol. 2010;56(1):58–64.

    Article  PubMed  Google Scholar 

  47. Tobler D, Fernandes SM, Wald RM, Landzberg M, Salehian O, Siu SC, et al. Pregnancy outcomes in women with transposition of the great arteries and arterial switch operation. Am J Cardiol. 2010;106(3):417–20.

    Article  PubMed  Google Scholar 

  48. Khairy P, Clair M, Fernandes SM, Blume ED, Powell AJ, Newburger JW, et al. Cardiovascular outcomes after the arterial switch operation for D-transposition of the great arteries. Circulation. 2013;127(3):331–9.

    Article  PubMed  Google Scholar 

  49. Choi BS, Kwon BS, Kim GB, Bae EJ, Noh CI, Choi JY, et al. Long-term outcomes after an arterial switch operation for simple complete transposition of the great arteries. Korean Circ J. 2010;40(1):23–30.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fricke TA, d’Udekem Y, Richardson M, Thuys C, Dronavalli M, Ramsay JM, et al. Outcomes of the arterial switch operation for transposition of the great arteries: 25 years of experience. Ann Thorac Surg. 2012;94(1):139–45.

    Article  PubMed  Google Scholar 

  51. Yamazaki A, Yamamoto N, Sakamoto T, Ishihara K, Iwata Y, Matsumura G, et al. Long-term outcomes and social independence level after arterial switch operation. Eur J Cardiothorac Surg. 2008;33(2):239–43.

    Article  PubMed  Google Scholar 

  52. Tanel RE, Wernovsky G, Landzberg MJ, Perry SB, Burke RP. Coronary artery abnormalities detected at cardiac catheterization following the arterial switch operation for transposition of the great arteries. Am J Cardiol. 1995;76(3):153–7.

    Article  CAS  PubMed  Google Scholar 

  53. Vargo P, Mavroudis C, Stewart RD, Backer CL. Late complications following the arterial switch operation. World J Pediatr Congenit Heart Surg. 2011;2(1):37–42.

    Article  PubMed  Google Scholar 

  54. Prêtre R, Tamisier D, Bonhoeffer P, Mauriat P, Pouard P, Sidi D, et al. Results of the arterial switch operation in neonates with transposed great arteries. Lancet. 2001;357(9271):1826–30.

    Article  PubMed  Google Scholar 

  55. Raisky O, Bergoend E, Agnoletti G, Ou P, Bonnet D, Sidi D, et al. Late coronary artery lesions after neonatal arterial switch operation: results of surgical coronary revascularization. Eur J Cardiothorac Surg. 2007;31(5):894–8.

    Article  PubMed  Google Scholar 

  56. Gatlin S, Kalynych A, Sallee D, Campbell R. Detection of a coronary artery anomaly after a sudden cardiac arrest in a 17 year-old with D-transposition of the great arteries status post arterial switch operation: a case report. Congenit Heart Dis. 2011;6(4):384–8.

    Article  PubMed  Google Scholar 

  57. Tsuda E, Imakita M, Yagihara T, Ono Y, Echigo S, Takahashi O, et al. Late death after arterial switch operation for transposition of the great arteries. Am Heart J. 1992;124(6):1551–7.

    Article  CAS  PubMed  Google Scholar 

  58. Pedra SRFF, Pedra CAC, Abizaid AA, Braga SLN, Staico R, Arrieta R, et al. Intracoronary ultrasound assessment late after the arterial switch operation for transposition of the great arteries. J Am Coll Cardiol. 2005;45(12):2061–8.

    Article  PubMed  Google Scholar 

  59. Turner DR, Muzik O, Forbes TJ, Sullivan NM, Singh TP. Coronary diameter and vasodilator function in children following arterial switch operation for complete transposition of the great arteries. Am J Cardiol. 2010;106(3):421–5.

    Article  PubMed  Google Scholar 

  60. Oskarsson G, Pesonen E, Munkhammar P, Sandström S, Jögi P. Normal coronary flow reserve after arterial switch operation for transposition of the great arteries: an intracoronary Doppler guidewire study. Circulation. 2002;106(13):1696–702.

    Article  PubMed  Google Scholar 

  61. Angeli E, Formigari R, Pace Napoleone C, Oppido G, Ragni L, Picchio FM, et al. Long-term coronary artery outcome after arterial switch operation for transposition of the great arteries. Eur J Cardiothorac Surg. 2010;38(6):714–20.

    Article  PubMed  Google Scholar 

  62. Hövels-Gürich HH, Kunz D, Seghaye MC, Miskova M, Messmer BJ, von Bernuth G. Results of exercise testing at a mean age of 10 years after neonatal arterial switch operation. Acta Paediatr. 2003;92(2):190–6.

    Article  PubMed  Google Scholar 

  63. Roche SL, Silversides CK, Oechslin EN. Monitoring the patient with transposition of the great arteries: arterial switch versus atrial switch. Curr Cardiol Rep. 2011;13(4):336–46.

    Article  PubMed  Google Scholar 

  64. Vogel M, Smallhorn JF, Gilday D, Benson LN, Ash J, Williams WG, et al. Assessment of myocardial perfusion in patients after the arterial switch operation. J Nucl Med. 1991;32(2):237–41.

    CAS  PubMed  Google Scholar 

  65. Hayes AM, Baker EJ, Kakadeker A, Parsons JM, Martin RP, Radley-Smith R, et al. Influence of anatomic correction for transposition of the great arteries on myocardial perfusion: radionuclide imaging with technetium-99m 2-methoxy isobutyl isonitrile. J Am Coll Cardiol. 1994;24(3):769–77.

    Article  CAS  PubMed  Google Scholar 

  66. Weindling SN, Wernovsky G, Colan SD, Parker JA, Boutin C, Mone SM, et al. Myocardial perfusion, function and exercise tolerance after the arterial switch operation. J Am Coll Cardiol. 1994;23(2):424–33.

    Article  CAS  PubMed  Google Scholar 

  67. Sugiyama H, Tsuda E, Ohuchi H, Yamada O, Shiraishi I. Chronological changes in stenosis of translocated coronary arteries on angiography after the arterial switch operation in children with transposition of the great arteries: comparison of myocardial scintigraphy and angiographic findings. Cardiol Young. 2016;26(4):638–43.

    Article  PubMed  Google Scholar 

  68. • Tobler D, Motwani M, Wald RM, Roche SL, Verocai F, Iwanochko RM, et al. Evaluation of a comprehensive cardiovascular magnetic resonance protocol in young adults late after the arterial switch operation for d-transposition of the great arteries. J Cardiovasc Magn Reson. 2014;16:98. This study compared CMR perfusion head-to-head with stress SPECT in a population of young adults under surveillance following neonatal arterial switch procedure for d-transposition. The authors reported a zero incidence of visually detected perfusion defects by CMR but a relatively high rate of defects seen at SPECT. Since the CMR protocol also included scar and coronary imaging, it was possible to determine which of the SPECT defects were false positives (almost all). The paper concluded that SPECT was a suboptimal modality for surveillance of young adults following arterial switch. It is perhaps unsurprising that SPECT did not perform better, as work from multiple authors has shown that the prevalence of significant coronary stenosis is rare in this population—thus by Bayesian theory, an excess of false positive results is to be expected in a low prevalence population.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wats K, Batul S, Abrol S, Friedman M. Out of the OR but not out of the woods: a case of iatrogenic coronary ostial stenosis post Bentall procedure. Chest. 2016;150(4):87A.

    Article  Google Scholar 

  70. Kovacic JC, Sharma SK, Kini AS. Bilateral coronary ostial stenoses post-Bentall procedure causing hemodynamic collapse and requiring mechanical assist device placement: successful intervention using the Szabo technique. Catheter Cardiovasc Interv. 2012;79(5):801–4.

    Article  PubMed  Google Scholar 

  71. Hsuan C-F, Hu P-Y, Tseng W-K, Lee T-L, Pan Y-F, Hsu K-L. Detachment of composite graft after Bentall’s operation manifested as acute myocardial infarction. J Am Coll Cardiol. 2010;55(2):e3.

    Article  PubMed  Google Scholar 

  72. Hauser M, Bengel FM, Kühn A, Sauer U, Zylla S, Braun SL, et al. Myocardial blood flow and flow reserve after coronary reimplantation in patients after arterial switch and Ross operation. Circulation. 2001;103(14):1875–80.

    Article  CAS  PubMed  Google Scholar 

  73. Hornung TS, Anagnostopoulos C, Bhardwaj P, Kilner PJ, Davlouros PA, Bailey J, et al. Comparison of equilibrium radionuclide ventriculography with cardiovascular magnetic resonance for assessing the systemic right ventricle after mustard or Senning procedures for complete transposition of the great arteries. Am J Cardiol. 2003;92(5):640–3.

    Article  PubMed  Google Scholar 

  74. Knirsch W, Nadal D. Infective endocarditis in congenital heart disease. Eur J Pediatr. 2011;170(9):1111–27.

    Article  PubMed  Google Scholar 

  75. Di Filippo S, Delahaye F, Semiond B, Celard M, Henaine R, Ninet J, et al. Current patterns of infective endocarditis in congenital heart disease. Heart. 2006;92(10):1490–5.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Israel O, Keidar Z. PET/CT imaging in infectious conditions. Ann N Y Acad Sci. 2011;1228:150–66.

    Article  PubMed  Google Scholar 

  77. Scholtens AM, Verberne HJ, Budde RPJ, Lam MGEH. Additional heparin preadministration improves cardiac glucose metabolism suppression over low-carbohydrate diet alone in 18F-FDG PET imaging. J Nucl Med. 2016;57(4):568–73.

    Article  PubMed  Google Scholar 

  78. Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Casalta J-P, Del Zotti F, et al. ESC guidelines for the Management of Infective Endocarditis: the task force for the management of infective endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J. 2015;36(44):3075–128.

    Article  PubMed  Google Scholar 

  79. Yen R-F, Chen Y-C, Wu Y-W, Pan M-H, Chang S-C. Using 18-fluoro-2-deoxyglucose positron emission tomography in detecting infectious endocarditis/endoarteritis. Acad Radiol. 2004;11(3):316–21.

    Article  PubMed  Google Scholar 

  80. Bleeker-Rovers CP, Vos FJ, Corstens FHM, Oyen WJG. Imaging of infectious diseases using [18F] fluorodeoxyglucose PET. Q J Nucl Med Mol Imaging. 2008;52(1):17–29.

    CAS  PubMed  Google Scholar 

  81. Kenzaka T, Shimoshikiryo M, Kitao A, Kario K, Hashimoto M. Positron emission tomography scan can be a reassuring tool to treat difficult cases of infective endocarditis. J Nucl Cardiol. 2011;18(4):741–3.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yedidya I, Stein GY, Vaturi M, Blieden L, Bernstine H, Pitlik SD, et al. Positron emission tomography/computed tomography for the diagnosis of endocarditis in patients with pulmonic stented valve/pulmonic stent. Ann Thorac Surg. 2011;91(1):287–9.

    Article  PubMed  Google Scholar 

  83. Vos FJ, Bleeker-Rovers CP, van Dijk APJ, Oyen WJG. Detection of pacemaker and lead infection with FDG-PET. Eur J Nucl Med Mol Imaging. 2006;33(10):1245.

    Article  CAS  PubMed  Google Scholar 

  84. Sankatsing SUC, Kolader M-E, Bouma BJ, Bennink RJ, Verberne HJ, Ansink TM, et al. 18F-Fluoro-2-deoxyglucose positron emission tomography-negative endocarditis lenta caused by Bartonella henselae. J Heart Valve Dis. 2011;20(1):100–2.

    PubMed  Google Scholar 

  85. Ohtsuka A, Inoue Y, Asano Y, Woodhams R, Shiomi K. Lymphoscintigraphy using dynamic imaging and SPECT/CT in chylothorax. OJMI. 2013;03(03):86–9.

    Article  Google Scholar 

  86. Kayano D, Taki J, Wakabayashi H, Kinuya S. Tc-99m human serum albumin lymphoscintigraphy with SPECT/CT in chylothorax. Clin Nucl Med. 2011;36(11):1056–7.

    Article  PubMed  Google Scholar 

  87. Prevot N, Tiffet O, Avet J, Quak E, Decousus M, Dubois F. Lymphoscintigraphy and SPECT/CT using 99mTc filtered sulphur colloid in chylothorax. Eur J Nucl Med Mol Imaging. 2011;38(9):1746.

    Article  PubMed  Google Scholar 

  88. Yang J, Codreanu I, Zhuang H. Minimal lymphatic leakage in an infant with chylothorax detected by lymphoscintigraphy SPECT/CT. Pediatrics. 2014;134(2):e606–10.

    Article  PubMed  Google Scholar 

  89. Takanami K, Ichikawa H, Takahashi S. Localization of lymphatic leakage site in chylothorax by thoracic duct scintigraphy by orally administered 123I BMIPP using SPECT/CT. Clin Nucl Med. 2012;37(4):403–5.

    Article  PubMed  Google Scholar 

  90. Sugiura K, Tanabe Y, Ogawa T, Tokushima T. Localization of chyle leakage site in postoperative chylothorax by oral administration of I-123 BMIPP. Ann Nucl Med. 2005;19(7):597–601.

    Article  PubMed  Google Scholar 

  91. Mertens L, Hagler DJ, Sauer U, Somerville J, Gewillig M. Protein-losing enteropathy after the Fontan operation: an international multicenter study. J Thorac Cardiovasc Surg. 1998;115(5):1063–73.

    Article  CAS  PubMed  Google Scholar 

  92. Griffiths ER, Kaza AK, Wyler von Ballmoos MC, Loyola H, Valente AM, Blume ED, et al. Evaluating failing Fontans for heart transplantation: predictors of death. Ann Thorac Surg. 2009;88(2):558–63.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Krueger SK, Burney DW, Ferlic RM. Protein-losing enteropathy complicating the mustard procedure. Surgery. 1977;81(3):305–6.

    CAS  PubMed  Google Scholar 

  94. Rao PS. Protein-losing enteropathy following the Fontan operation. Journal of Invasive Cardiology. 2007. Available from: http://www.invasivecardiology.com/article/7815. [Cited 26 Apr 2017].

  95. Kirk CR, Gibbs JL, Wilkinson JL, Wilson N, Dickinson DF, Qureshi SA. Protein-losing enteropathy caused by baffle obstruction after Mustard’s operation. Br Heart J. 1988;59(1):69–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mallula KK, Kenny D, Hijazi ZM. Transjugular melody valve placement in a small child with protein losing enteropathy. Catheter Cardiovasc Interv. 2015;85(2):267–70.

    Article  PubMed  Google Scholar 

  97. Aggarwal S, Delius RE, Walters HL, L’Ecuyer TJ. Recurrent protein-losing enteropathy and tricuspid valve insufficiency in a transplanted heart: a causal relationship? Congenit Heart Dis. 2012;7(3):E10–3.

    Article  PubMed  Google Scholar 

  98. Mizuno M, Ohuchi H, Kagisaki K, Miyazaki A, Ishibashi-Ueda H, Yamada O. Experience of decortication for restrictive hemodynamics in adults with congenital heart disease. Pediatr Int. 2014;56(4):630–3.

    Article  PubMed  Google Scholar 

  99. Uzuner O, Ziessman HA. Protein-losing enteropathy detected by Tc-99m-MDP abdominal scintigraphy. Pediatr Radiol. 2008;38(10):1122–4.

    Article  PubMed  Google Scholar 

  100. Meristoudis G, Birbilis C, Ilias I, Tsaroucha A, Batsakis C, Christakopoulou J. Intestinal accumulation of 99mTc-MDP in a patient with protein-losing enteropathy. Eur J Nucl Med Mol Imaging. 2008;35(1):224.

    Article  CAS  PubMed  Google Scholar 

  101. Chen Y-C, Hwang S-J, Chiu J-S, Chuang M-H, Chung M-I, Wang Y-F. Chronic edema from protein-losing enteropathy: scintigraphic diagnosis. Kidney Int. 2009;75(10):1124.

    Article  PubMed  Google Scholar 

  102. Hill RE, Comm B, Hercz A, Corey ML, Gilday DL, Eng B, et al. Fecal clearance of α1-antitrypsin: a reliable measure of enteric protein loss in children. J Pediatr. 1981;99(3):416–8.

    Article  CAS  PubMed  Google Scholar 

  103. Fujii T, Shimizu T, Takahashi K, Kishiro M, Ohkubo M, Akimoto K, et al. Fecal α1-antitrypsin concentrations as a measure of enteric protein loss after modified Fontan operations. J Pediatr Gastroenterol Nutr. 2003;37(5):577–80.

    Article  PubMed  Google Scholar 

  104. Chau TN, Mok MY, Chan EYT, Luk WH, Lai KB, Li FTW, et al. Evaluation of performance of measurement of faecal α(1)-antitrypsin clearance and technetium-99m human serum albumin scintigraphy in protein-losing enteropathy. Digestion. 2011;84(3):199–206.

    Article  CAS  PubMed  Google Scholar 

  105. Fathala A. Quantitative lung perfusion scintigraphy in patients with congenital heart disease. Heart Views. 2010;11(3):109–14.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Pober BR. Williams-Beuren syndrome. N Engl J Med. 2010;362(3):239–52.

    Article  CAS  PubMed  Google Scholar 

  107. Cherniske EM, Carpenter TO, Klaiman C, Young E, Bregman J, Insogna K, et al. Multisystem study of 20 older adults with Williams syndrome. Am J Med Genet A. 2004;131(3):255–64.

    Article  PubMed  Google Scholar 

  108. Puyau FA, Meckstroth GR. Evaluation of pulmonary perfusion patterns in children with tetralogy of Fallot. Am J Roentgenol Radium Therapy, Nucl Med. 1974;122(1):119–24.

    Article  CAS  Google Scholar 

  109. Chien K-J, Huang H-W, Huang T-C, Lee C-L, Weng K-P, Lin C-C, et al. Assessment of branch pulmonary artery stenosis in children after repair of tetralogy of Fallot using lung perfusion scintigraphy comparison with echocardiography. Ann Nucl Med. 2016;30(1):49–59.

    Article  PubMed  Google Scholar 

  110. Seliem MA, Murphy J, Vetter J, Heyman S, Norwood W. Lung perfusion patterns after bidirectional cavopulmonary anastomosis (hemi-Fontan procedure). Pediatr Cardiol. 1997;18(3):191–6.

    Article  CAS  PubMed  Google Scholar 

  111. Grimon G, André L, Bernard O, Raffestin B, Desgrez A. Early radionuclide detection of intrapulmonary shunts in children with liver disease. J Nucl Med. 1994;35(8):1328–32.

    CAS  PubMed  Google Scholar 

  112. Pruckmayer M, Zacherl S, Salzer-Muhar U, Schlemmer M, Leitha T. Scintigraphic assessment of pulmonary and whole-body blood flow patterns after surgical intervention in congenital heart disease. J Nucl Med. 1999;40(9):1477–83.

    CAS  PubMed  Google Scholar 

  113. Sridharan S, Derrick G, Deanfield J, Taylor AM. Assessment of differential branch pulmonary blood flow: a comparative study of phase contrast magnetic resonance imaging and radionuclide lung perfusion imaging. Heart. 2006;92(7):963–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Opotowsky AR, Moko LE, Ginns J, Rosenbaum M, Greutmann M, Aboulhosn J, et al. Pheochromocytoma and paraganglioma in cyanotic congenital heart disease. J Clin Endocrinol Metab. 2015;100(4):1325–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hirsch JH, Killien FC, Troupin RH. Bilateral carotid body tumors and cyanotic heart disease. AJR Am J Roentgenol. 1980;134(5):1073–5.

    Article  CAS  PubMed  Google Scholar 

  116. Mak JKC, Kay M. Carotid body tumour associated with cyanotic heart disease. BMJ Case Rep. 2016;9:2016.

    Google Scholar 

  117. Gabhane SK, Gangane NM, Sinha RT. Pentalogy of Fallot and cardiac paraganglioma: a case report. Cases J. 2009;2:9392.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Rich BS, Moo T-A, Mark S, Scognamiglio T, Pecker MS, Sobol I, et al. Sympathetic paraganglioma in a patient with unrepaired tetralogy of Fallot: a case report and review of the literature. J Clin Endocrinol Metab. 2013;98(1):7–12.

    Article  CAS  PubMed  Google Scholar 

  119. Bockelman HW, Arya S, Gilbert EF. Cyanotic congenital heart disease with malignant paraganglioma. Cancer. 1982; Available from: http://onlinelibrary.wiley.com/store/10.1002/1097-0142(19821201)50:11%3C2513::AID-CNCR2820501143%3E3.0.CO;2-6/asset/2820501143_ftp.pdf?v=1&t=j253mwet&s=31e88907b18da9eb6b0603a39014a32c326b2480

  120. Jacobson AF, Travin MI. Impact of medications on mIBG uptake, with specific attention to the heart: comprehensive review of the literature. J Nucl Cardiol. 2015;22(5):980–93.

    Article  PubMed  Google Scholar 

  121. Lepoutre-Lussey C, Caramella C, Bidault F, Déandreis D, Berdelou A, Al Ghuzlan A, et al. Screening in asymptomatic SDHx mutation carriers: added value of 18F-FDG PET/CT at initial diagnosis and 1-year follow-up. Eur J Nucl Med Mol Imaging. 2015;42(6):868–76.

    Article  CAS  PubMed  Google Scholar 

  122. Hsu CC-T, Singh D, Kwan GNC, Bhuta S. 18F-FDG PET/CT in a patient with glomus vagale paraganglioma and Eisenmenger syndrome: searching for the missing link? Clin Nucl Med. 2016;41(3):e135–6.

    Article  PubMed  Google Scholar 

  123. Yiu K-H, Jim M-H, Siu C-W, Lee C-H, Yuen M, Mok M, et al. Amiodarone-induced thyrotoxicosis is a predictor of adverse cardiovascular outcome. J Clin Endocrinol Metab. 2009;94(1):109–14.

    Article  CAS  PubMed  Google Scholar 

  124. • Thorne SA, Barnes I, Cullinan P, Somerville J. Amiodarone-associated thyroid dysfunction: risk factors in adults with congenital heart disease. Circulation. 1999;100(2):149–54. Patients with complex CHD have a high incidence of atrial and ventricular arrhythmias. This was one of the first studies to point out the risks of using amiodarone in congenital populations. Over one third of the sample developed some form of thyroid dysfunction with amiodarone use. Risk factors included female sex, complex lesions, prior Fontan surgery and a dose of more than 200mg of amiodarone/day.

    Article  CAS  PubMed  Google Scholar 

  125. Stan MN, Hess EP, Bahn RS, Warnes CA, Ammash NM, Brennan MD, et al. A risk prediction index for amiodarone-induced thyrotoxicosis in adults with congenital heart disease. J Thyroid Res. 2012;2012:210529.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Stan MN, Ammash NM, Warnes CA, Brennan MD, Thapa P, Nannenga MR, et al. Body mass index and the development of amiodarone-induced thyrotoxicosis in adults with congenital heart disease—a cohort study. Int J Cardiol. 2013;167(3):821–6.

    Article  PubMed  Google Scholar 

  127. Bogazzi F, Bartalena L, Gasperi M, Braverman LE, Martino E. The various effects of amiodarone on thyroid function. Thyroid. 2001;11(5):511–9.

    Article  CAS  PubMed  Google Scholar 

  128. Bogazzi F, Bartalena L, Dell’Unto E, Tomisti L, Rossi G, Pepe P, et al. Proportion of type 1 and type 2 amiodarone-induced thyrotoxicosis has changed over a 27-year period in Italy. Clin Endocrinol. 2007;67(4):533–7.

    CAS  Google Scholar 

  129. Wang J, Zhang R. Evaluation of (99m)Tc-MIBI in thyroid gland imaging for the diagnosis of amiodarone-induced thyrotoxicosis. Br J Radiol. 2017;90(1071):20160836.

    Article  PubMed  Google Scholar 

  130. Piga M, Cocco MC, Serra A, Boi F, Loy M, Mariotti S. The usefulness of 99mTc-sestaMIBI thyroid scan in the differential diagnosis and management of amiodarone-induced thyrotoxicosis. Eur J Endocrinol. 2008;159(4):423–9.

    Article  CAS  PubMed  Google Scholar 

  131. Matsushita T, Ikeda S, Miyahara Y, Yakabe K, Yamaguchi K, Furukawa K, et al. Use of [123I]-BMIPP myocardial scintigraphy for the clinical evaluation of a fatty-acid metabolism disorder of the right ventricle in chronic respiratory and pulmonary vascular disease. J Int Med Res. 2000;28(3):111–23.

    Article  CAS  PubMed  Google Scholar 

  132. Nakajima K, Taki J, Ohno T, Taniguchi M, Taniguchi M, Bunko H, et al. Assessment of right ventricular overload by a thallium-201 SPECT study in children with congenital heart disease. J Nucl Med. 1991;32(12):2215–20.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Crean.

Ethics declarations

Conflict of Interest

Andrew M. Crean and Manish Motwani declare that they have no conflict of interest. Fozia Ahmed reports speaker fees and a research grant from Medtronic.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardiac Nuclear Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crean, A.M., Ahmed, F. & Motwani, M. The Role of Radionuclide Imaging in Congenital Heart Disease. Curr Cardiovasc Imaging Rep 10, 38 (2017). https://doi.org/10.1007/s12410-017-9434-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-017-9434-0

Keywords

Navigation