Skip to main content
Log in

Quantification of Myocardial Blood Flow with CZT SPECT Imaging: Is It Ready for Clinical Use?

  • Cardiac Nuclear Imaging (Alberto Cuocolo and Mario Petretta, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Myocardial blood flow (MBF) quantification with positron emission tomography (PET) is well validated and has established diagnostic and prognostic value for patient management. New cardiac dedicated solid-state single-photon emission tomography (SPECT) cameras using cadmium-zinc-telluride (CZT) crystals have better temporal and spatial resolution and increased count sensitivity than conventional SPECT systems and can measure MBF. We review recent validation studies using CZT technology for measurement of MBF and assess its readiness for clinical application.

Recent Findings

One preclinical study showed the accuracy of MBF measured using the CZT technology and conventional radiotracers versus microsphere data. Clinical studies have demonstrated the feasibility in patients and excellent correlations with coronary angiography and flow-wire studies, and PET imaging.

Summary

Measurement of MBF is possible with SPECT CZT systems and has been validated. Further studies are necessary to confirm the incremental value of MBF measurements with SPECT CZT to standard relative perfusion imaging for diagnostic accuracy and risk stratification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CAD:

coronary artery disease

CZT:

cadmium-zinc-telluride

PET:

positron emission tomography

MBF:

myocardial blood flow

MBFR:

myocardial blood flow reserve

SPECT:

single-photon emission tomography

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Tomiyama Y, Manabe O, Oyama-Manabe N, Naya M, Sugimori H, Hirata K, et al. Quantification of myocardial blood flow with dynamic perfusion 3.0 Tesla MRI: validation with (15) O-water PET. J Magn Reson Imaging JMRI. 2015;42(3):754–62. doi:10.1002/jmri.24834.

    Article  PubMed  Google Scholar 

  2. Morton G, Chiribiri A, Ishida M, Hussain ST, Schuster A, Indermuehle A, et al. Quantification of absolute myocardial perfusion in patients with coronary artery disease: comparison between cardiovascular magnetic resonance and positron emission tomography. J Am Coll Cardiol. 2012;60(16):1546–55. doi:10.1016/j.jacc.2012.05.052.

    Article  PubMed  Google Scholar 

  3. Kikuchi Y, Oyama-Manabe N, Naya M, Manabe O, Tomiyama Y, Sasaki T, et al. Quantification of myocardial blood flow using dynamic 320-row multi-detector CT as compared with 15O-H2O PET. Eur Radiol. 2014;24(7):1547–56. doi:10.1007/s00330-014-3164-3.

    Article  PubMed  Google Scholar 

  4. Juneau D, Erthal F, Ohira H, Mc Ardle B, Hessian R, de Kemp RA, et al. Clinical PET myocardial perfusion imaging and flow quantification. Cardiol Clin. 2016;34(1):69–85. doi:10.1016/j.ccl.2015.07.013.

    Article  PubMed  Google Scholar 

  5. Schindler TH, Quercioli A, Valenta I, Ambrosio G, Wahl RL, Dilsizian V. Quantitative assessment of myocardial blood flow—clinical and research applications. Semin Nucl Med. 2014;44(4):274–93. doi:10.1053/j.semnuclmed.2014.04.002.

    Article  PubMed  Google Scholar 

  6. Garcia EV. Are SPECT measurements of myocardial blood flow and flow reserve ready for clinical use? Eur J Nucl Med Mol Imaging. 2014;41(12):2291–3. doi:10.1007/s00259-014-2924-2.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wolk MJ, Bailey SR, Doherty JU, Douglas PS, Hendel RC, Kramer CM, et al. ACCF/AHA/ASE/ASNC/HFSA/HRS/SCAI/SCCT/SCMR/STS 2013 Multimodality Appropriate Use Criteria for the Detection and Risk Assessment of Stable Ischemic Heart DiseaseA Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2014;63(4):380–406. doi:10.1016/j.jacc.2013.11.009.

    Article  PubMed  Google Scholar 

  8. Imbert L, Poussier S, Franken PR, Songy B, Verger A, Morel O, et al. Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images. J Nucl Med. 2012;53(12):1897–903. doi:10.2967/jnumed.112.107417.

    Article  PubMed  Google Scholar 

  9. DePuey EG. Advances in SPECT camera software and hardware: currently available and new on the horizon. J Nucl Cardiol. 2012;19(3):551–81. doi:10.1007/s12350-012-9544-7.

    Article  PubMed  Google Scholar 

  10. Mouden M, Timmer JR, Ottervanger JP, Reiffers S, Oostdijk AH, Knollema S, et al. Impact of a new ultrafast CZT SPECT camera for myocardial perfusion imaging: fewer equivocal results and lower radiation dose. Eur J Nucl Med Mol Imaging. 2012;39(6):1048–55. doi:10.1007/s00259-012-2086-z.

    Article  PubMed  Google Scholar 

  11. Duvall WL, Croft LB, Godiwala T, Ginsberg E, George T, Henzlova MJ. Reduced isotope dose with rapid SPECT MPI imaging: initial experience with a CZT SPECT camera. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2010;17(6):1009–14. doi:10.1007/s12350-010-9215-5.

    Article  Google Scholar 

  12. Lima R, Peclat T, Soares T, Ferreira C, Souza AC, Camargo G. Comparison of the prognostic value of myocardial perfusion imaging using a CZT-SPECT camera with a conventional anger camera. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2017;24(1):245–51. doi:10.1007/s12350-016-0618-9.

    Article  Google Scholar 

  13. Ben-Haim S, Agostini D. Dynamic SPECT: evolution of a widely available tool for the assessment of coronary flow reserve. Eur J Nucl Med Mol Imaging. 2015 Feb;42(2):302–4. doi:10.1007/s00259-014-2929-x.

    Article  PubMed  Google Scholar 

  14. Ziadi MC, Dekemp RA, Williams K, Guo A, Renaud JM, Chow BJ, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol. 2012;19(4):670–80. doi:10.1007/s12350-011-9506-5.

    Article  PubMed  Google Scholar 

  15. Fiechter M, Ghadri JR, Gebhard C, Fuchs TA, Pazhenkottil AP, Nkoulou RN, et al. Diagnostic value of 13N-ammonia myocardial perfusion PET: added value of myocardial flow reserve. J Nucl Med. 2012;53:1230–4.

    Article  CAS  PubMed  Google Scholar 

  16. Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J Am Coll Cardiol. 2009;54(2):150–6. doi:10.1016/j.jacc.2009.02.069.

    Article  PubMed  Google Scholar 

  17. Ziadi MC, Dekemp RA, Williams KA, Guo A, Chow BJ, Renaud JM, et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol. 2011;58(7):740–8. doi:10.1016/j.jacc.2011.01.065.

    Article  PubMed  Google Scholar 

  18. Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124(20):2215–24. doi:10.1161/CIRCULATIONAHA.111.050427.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Majmudar MD, Murthy VL, Shah RV, Kolli S, Mousavi N, Foster CR, et al. Quantification of coronary flow reserve in patients with ischaemic and non-ischaemic cardiomyopathy and its association with clinical outcomes. Eur Heart J Cardiovasc Imaging. 2015;16(8):900–9. doi:10.1093/ehjci/jev012.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med. 2003;349(11):1027–35. doi:10.1056/NEJMoa025050.

    Article  CAS  PubMed  Google Scholar 

  21. McArdle BA, Davies RA, Chen L, Small GR, Ruddy TD, Dwivedi G, et al. Prognostic value of rubidium-82 positron emission tomography in patients after heart transplant. Circ Cardiovasc Imaging. 2014;7(6):930–7. doi:10.1161/CIRCIMAGING.114.002184.

    Article  Google Scholar 

  22. Hsu B, Chen FC, Wu TC, Huang WS, Hou PN, Chen CC, et al. Quantitation of myocardial blood flow and myocardial flow reserve with 99mTc-sestamibi dynamic SPECT/CT to enhance detection of coronary artery disease. Eur J Nucl Med Mol Imaging. 2014;41(12):2294–306. doi:10.1007/s00259-014-2881-9.

    Article  CAS  PubMed  Google Scholar 

  23. Shrestha U, Sciammarella M, Alhassen F, Yeghiazarians Y, Ellin J, Verdin E, et al. Measurement of absolute myocardial blood flow in humans using dynamic cardiac SPECT and 99mTc-tetrofosmin: method and validation. J Nucl Cardiol. 2017 Feb;24(1):268–77. doi:10.1007/s12350-015-0320-3.

    Article  PubMed  Google Scholar 

  24. Hsu B, Hu LH, Yang BH, Chen LC, Chen YK, Ting CH, et al. SPECT myocardial blood flow quantitation toward clinical use: a comparative study with 13N-Ammonia PET myocardial blood flow quantitation. Eur J Nucl Med Mol Imaging. 2017;44(1):117–28.

    Article  CAS  PubMed  Google Scholar 

  25. • Slomka PJ, Patton JA, Berman DS, Germano G. Advances in technical aspects of myocardial perfusion SPECT imaging. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2009;16(2):255–76. doi:10.1007/s12350-009-9052-6. Excellent review of new developments in SPECT and PET technology.

    Article  Google Scholar 

  26. • Wells RG, Timmins R, Klein R, Lockwood J, Marvin B, de Kemp RA, et al. Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model. J Nucl Med. 2014;55(10):1685–91. doi:10.2967/jnumed.114.139782. Only preclinical study validating the measurement of myocardial blood flow with SPECT CZT technology and is the basis for ongoing clinical development.

    Article  CAS  PubMed  Google Scholar 

  27. Timmins R, Klein R, Petryk J, Marvin B, Wei L, deKemp RA, et al. Reduced dose measurement of absolute myocardial blood flow using dynamic SPECT imaging in a porcine model. Med Phys. 2015;42:5075–83.

    Article  PubMed  Google Scholar 

  28. Wells RG, Marvin B, Poirier M, de Kemp R, Klein R, Ruddy T. Myocardial blood flow measured with a multi-pinhole SPECT camera: in vivo comparison to Rb-82 PET. J Nucl Med. 2016;57(supplement 2):284.

    Google Scholar 

  29. Alenazy AB, Wells RG, Ruddy TD. New solid state cadmium-zinc-telluride technology for cardiac single photon emission computed tomographic myocardial perfusion imaging. Expert Rev Med Devices. 2017;14(3):213–22. doi:10.1080/17434440.2017.1296763.

    Article  CAS  PubMed  Google Scholar 

  30. • Ben-Haim S, Murthy VL, Breault C, Allie R, Sitek A, Roth N, et al. Quantification of myocardial perfusion reserve using dynamic SPECT imaging in humans: a feasibility study. J Nucl Med. 2013;54(6):873–9. doi:10.2967/jnumed.112.109652. First clinical study to show the feasibility of measuring myocardial blood flow in patients with SPECT CZT technology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shiraishi S, Sakamoto F, Tsuda N, Yoshida M, Tomiguchi S, Utsunomiya D, et al. Prediction of left main or 3-vessel disease using myocardial perfusion reserve on dynamic thallium-201 single-photon emission computed tomography with a semiconductor gamma camera. Circ J Off J Jpn Circ Soc. 2015;79(3):623–31. doi:10.1253/circj.CJ-14-0932.

    Google Scholar 

  32. Ben Bouallègue F, Roubille F, Lattuca B, Cung TT, Macia JC, Gervasoni R, et al. SPECT myocardial perfusion reserve in patients with multivessel coronary disease: correlation with angiographic findings and invasive fractional flow reserve measurements. J Nucl Med Off Publ Soc Nucl Med. 2015;56(11):1712–7. doi:10.2967/jnumed.114.143164.

    Google Scholar 

  33. Nkoulou R, Nkoulou R, Fuchs TA, Pazhenkottil AP, Kuest SM, Ghadri JR, et al. Absolute myocardial blood flow and flow reserve assessed by gated SPECT with cadmium-zinc-telluride detectors using 99mTc-tetrofosmin: head-to-head comparison with 13N-ammonia PET. J Nucl Med Off Publ Soc Nucl Med. 2016;57(12):1887–92. doi:10.2967/jnumed.115.165498.

    Google Scholar 

  34. Sogbein OO, Pelletier-Galarneau M, Schindler TH, Wei L, Wells RG, Ruddy TD. New SPECT and PET radiopharmaceuticals for imaging cardiovascular disease. Biomed Res Int. 2014;2014:e942960. doi:10.1155/2014/942960.

    Article  Google Scholar 

  35. Ma H, Li S, Wu Z, Liu J, Liu H, Guo X. Comparison of 99mTc-N-DBODC5 and 99mTc-mIBI of myocardial perfusion imaging for diagnosis of coronary artery disease. Biomed Res Int. 2013;2013:e145427. doi:10.1155/2013/145427.

    Google Scholar 

  36. Kim Y-S, Wang J, Broisat A, Glover DK, Liu S. Tc-99m-N-MPO: novel cationic Tc-99m radiotracer for myocardial perfusion imaging. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2008;15(4):535–46. doi:10.1016/j.nuclcard.2008.02.022.

    Article  Google Scholar 

  37. Wells RG, Wei L, Petryk J, et al. Flow-dependent uptake of 123I-CMICE-013, a novel SPECT perfusion agent, compared with standard tracers. J Nucl Med Off Publ Soc Nucl Med. 2015;56(5):764–70. doi:10.2967/jnumed.114.151563.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terrence D. Ruddy.

Ethics declarations

Conflict of Interest

Fernanda Erthal and Ronaldo Lima declare that they have no conflict of interest.

R. Glenn Wells reports grants from Natural Sciences and Engineering Research Council of Canada, and grants, non-financial support, and speaker honorarium from GE Healthcare, during the conduct of the study. He also reports grants from Advanced Accelerator Applications, outside the submitted work.

Terrence D. Ruddy reports grants from GE Healthcare, during the conduct of the study. He also reports grants from Advanced Accelerator Applications International and honoraria from GE Healthcare, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is a part of Topical Collection on Cardiac Nuclear Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erthal, F., Lima, R., Glenn Wells, R. et al. Quantification of Myocardial Blood Flow with CZT SPECT Imaging: Is It Ready for Clinical Use?. Curr Cardiovasc Imaging Rep 10, 34 (2017). https://doi.org/10.1007/s12410-017-9432-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-017-9432-2

Keywords

Navigation