Skip to main content

Advertisement

Log in

Low Radiation Coronary CT

  • Cardiac Computed Tomography (S Achenbach and T Villines, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

With the increasing use of coronary computed tomography angiography (CCTA) as a noninvasive tool to evaluate for coronary artery disease, physicians who request, perform, or interpret these studies should be aware of the associated potential risks of ionizing radiation. This article provides an overview of radiation issues in CT, the risks of diagnostic-level ionizing radiation, and strategies that can be adopted to minimize exposure to radiation of patients undergoing CCTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Phelps B. AAPM Report No. 96. 2013. Discuss the measurement and reporting of radiation dose in CT.

  2. Brenner DJ, Hall EJ. Computed tomography – an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.

    Article  CAS  PubMed  Google Scholar 

  3. Lee CH, Goo JM, Ye HJ, Ye S-J, Park CM, Chun EJ, et al. Radiation dose modulation techniques in the multidetector CT era: from basics to practice. Radiographics. 2008;28(5):1451–9.

    Article  PubMed  Google Scholar 

  4. Smith-Bindman R. Is computed tomography safe? N Engl J Med. 2010;363(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  5. Dougeni E, Faulkner K, Panayiotakis G. A review of patient dose and optimisation methods in adult and paediatric CT scanning. Eur J Radiol. 2012 Apr 81(4):e665–83.

  6. Jacobs TF, Becker CR, Ohnesorge B, Flohr T, Suess C, Schoepf UJ, Reiser MF. Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol. 2002;12(5):1081–6.

  7. Hausleiter J. Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation. 2006;113(10):1305–10. The use of 100 kV instead of 120 kV in cardiac CT.

  8. Hsieh J, Londt J, Vass M, Li J, Tang X, Okerlund D. Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys. 2006;33(11):4236–48. Hsieh et al. were the first to described prospective ECG-triggered acquisition, a major radiation dose reduction strategy for cardiac CT..

  9. Deetjen A, Möllmann S, Conradi G, Rolf A, Schmermund A, Hamm CW, Dill T. Use of automatic exposure control in multislice computed tomography of the coronaries: comparison of 16-slice and 64-slice scanner data with conventional coronary angiography. Heart. 2007;93(9):1040–3.

  10. Achenbach S, Marwan M, Schepis T, Pflederer T, Bruder H, Allmendinger T, et al. High-pitch spiral acquisition: a new scan mode for coronary CT angiography. J Cardiovasc Comput Tomogr. 2009;3(2):117–21. The use of high-pitch spiral acquisition for cardiac CT.

  11. Gosling O, Loader R, Venables P, Roobottom C, Rowles N, Bellenger N, Morgan-Hughes G. A comparison of radiation doses between state-of-the-art multislice CT coronary angiography with iterative reconstruction, multislice CT coronary angiography with standard filtered back-projection and invasive diagnostic coronary angiography. Heart. 2010;96(12):922–6.

  12. Halliburton SS, Abbara S, Chen MY, Gentry R, Mahesh M, Raff GL, et al. SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT. J Cardiovasc Comput Tomogr. 2011;5(4):198–224. SCCT guideline document discussing radiation dose and dose-optimization strategies for performance of cardiac CT.

  13. Mayo JR, Leipsic JA. Radiation dose in cardiac CT. AJR Am J Roentgenol. 2009;192(3):646–53.

    Article  PubMed  Google Scholar 

  14. Shuryak I, Sachs RK, Brenner DJ. Cancer risks after radiation exposure in middle age. J Natl Cancer Inst. 2010;102(21):1628–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Achenbach S, Marwan M, Schepis T, Pflederer T, Bruder H, Allmendinger T, et al. High-pitch spiral acquisition: a new scan mode for coronary CT angiography. J Cardiovasc Comput Tomogr. 2009;3(2):117–21. The use of high-pitch spiral acquisition for cardiac CT.

  16. Hausleiter J, Meyer T. Tips to minimize radiation exposure. J Cardiovasc Comput Tomogr. 2008;2(5):325–7.

    Article  PubMed  Google Scholar 

  17. Lee AM, Engel L-C, Shah B, Liew G, Sidhu MS, Kalra M, et al. Coronary computed tomography angiography during arrhythmia: radiation dose reduction with prospectively ECG-triggered axial and retrospectively ECG-gated helical 128-slice dual-source CT. J Cardiovasc Comput Tomogr. 2012;6(3):172–83.

    Article  PubMed  Google Scholar 

  18. Lee AM, Beaudoin J, Engel L-C, Sidhu MS, Abbara S, Brady TJ, et al. Assessment of image quality and radiation dose of prospectively ECG-triggered adaptive dual-source coronary computed tomography angiography (cCTA) with arrhythmia rejection algorithm in systole versus diastole: a retrospective cohort study. Int J Cardiovasc Imaging. 2013;29(6):1361–70.

    Article  PubMed  Google Scholar 

  19. Leschka S, Scheffel H, Desbiolles L, Plass A, Gaemperli O, Valenta I, et al. Image quality and reconstruction intervals of dual-source CT coronary angiography: recommendations for ECG-pulsing windowing. Investig Radiol. 2007;42(8):543–9.

    Article  Google Scholar 

  20. Hsieh J, Londt J, Vass M, Li J, Tang X, Okerlund D. Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys. 2006;33(11):4236–48. Hsieh et al. were the first to described prospective ECG-triggered acquisition, a major radiation dose reduction strategy for cardiac CT..

  21. Husmann L, Valenta I, Gaemperli O, Adda O, Treyer V, Wyss CA, et al. Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J. 2007;29(2):191–7.

    Article  PubMed  Google Scholar 

  22. Shuman WP, Branch KR, May JM, Mitsumori LM, Strote JN, Warren BH, et al. Whole-chest 64-MDCT of emergency department patients with nonspecific chest pain: radiation dose and coronary artery image quality with prospective ECG triggering versus retrospective ECG gating. AJR Am J Roentgenol. 2009;192(6):1662–7.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Hausleiter J, Bischoff B, Hein F, Meyer T, Hadamitzky M, Thierfelder C, et al. Feasibility of dual-source cardiac CT angiography with high-pitch scan protocols. J Cardiovasc Comput Tomogr. 2009;3(4):236–42.

    Article  PubMed  Google Scholar 

  24. Neefjes LA, Dharampal AS, Rossi A, Nieman K, Weustink AC, Dijkshoorn ML, et al. Image quality and radiation exposure using different low-dose scan protocols in dual-source CT coronary angiography: randomized study. Radiology. 2011;261(3):779–86.

    Article  PubMed  Google Scholar 

  25. Kröpil P, Rojas CA, Ghoshhajra B, Lanzman RS, Miese FR, Scherer A, et al. Prospectively ECG-triggered high-pitch spiral acquisition for cardiac CT angiography in routine clinical practice: initial results. J Thorac Imaging. 2012;27(3):194–201.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Schuhbaeck A, Achenbach S, Layritz C, Eisentopf J, Hecker F, Pflederer T, et al. Image quality of ultra-low radiation exposure coronary CT angiography with an effective dose. Eur Radiol. 2013;23(3):597–606.

    Article  PubMed  Google Scholar 

  27. Tung MK, Cameron JD, Casan JM, Crossett M, Troupis JM, Meredith IT, et al. Radiation dose in 320-slice multidetector cardiac CT: a single center experience of evolving dose minimization. J Cardiovasc Comput Tomogr. 2013;7(3):157–66.

    Article  PubMed  Google Scholar 

  28. Chen MY, Shanbhag SM, Arai AE. Submillisievert median radiation dose for coronary angiography with a second-generation 320-detector row CT scanner in 107 consecutive patients. Radiology. 2013;267(1):76–85.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Foley SJ, McEntee MF, Achenbach S, Brennan PC, Rainford LS, Dodd JD. Breast surface radiation dose during coronary CT angiography: reduction by breast displacement and lead shielding. AJR Am J Roentgenol. 2011;197(2):367–73.

    Article  PubMed  Google Scholar 

  30. Singh S, Kalra MK, Thrall JH, Mahesh M. Automatic exposure control in CT: applications and limitations. J Am Coll Radiol. 2011;8(6):446–9.

    Article  PubMed  Google Scholar 

  31. Hulten E, Devine P, Welch T, Feuerstein I, Taylor A, Petrillo S, et al. Comparison of coronary CT angiography image quality with and without breast shields. AJR Am J Roentgenol. 2013;200(3):529–36.

    Article  PubMed  Google Scholar 

  32. Techasith T, Ghoshhajra BB, Truong QA, Pale R, Nasir K, Bolen MA, et al. The effect of heart rhythm on patient radiation dose with dual-source cardiac computed tomography. J Cardiovasc Comput Tomogr. 2011;5(4):255–63.

    Article  PubMed  Google Scholar 

  33. Bamberg F, Sommer WH, Schenzle JC, Becker CR, Nikolaou K, Reiser MF, et al. Systolic acquisition of coronary dual-source computed tomography angiography: feasibility in an unselected patient population. Eur Radiol. 2009;20(6):1331–6.

    Article  PubMed  Google Scholar 

  34. Feuchtner G, Götti R, Plass A, Baumueller S, Stolzmann P, Scheffel H, et al. Dual-step prospective ECG-triggered 128-slice dual-source CT for evaluation of coronary arteries and cardiac function without heart rate control: a technical note. Eur Radiol. 2010;20(9):2092–9.

    Article  PubMed  Google Scholar 

  35. Alkadhi H, Stolzmann P, Scheffel H, Desbiolles L, Baumüller S, Plass A, et al. Radiation dose of cardiac dual-source CT: the effect of tailoring the protocol to patient-specific parameters. Eur J Radiol. 2008;68(3):385–91.

    Article  PubMed  Google Scholar 

  36. Ghoshhajra BB, Engel L-C, Major GP, Verdini D, Sidhu M, Károlyi M, et al. Direct chest area measurement: a potential anthropometric replacement for BMI to inform cardiac CT dose parameters? J Cardiovasc Comput Tomogr. 2011;5(4):240–6.

    Article  PubMed  Google Scholar 

  37. Ghoshhajra BB, Engel L-C, Károlyi M, Sidhu MS, Wai B, Barreto M, et al. Cardiac computed tomography angiography with automatic tube potential selection: effects on radiation dose and image quality. J Thorac Imaging. 2013;28(1):40–8.

    Article  PubMed  Google Scholar 

  38. Winklehner A, Goetti R, Baumueller S, Karlo C, Schmidt B, Raupach R, et al. Automated attenuation-based tube potential selection for thoracoabdominal computed tomography angiography: improved dose effectiveness. Investig Radiol. 2011;46(12):767–73.

    Article  CAS  Google Scholar 

  39. Layritz C, Muschiol G, Flohr T, Bietau C, Marwan M, Schuhbaeck A, et al. Automated attenuation-based selection of tube voltage and tube current for coronary CT angiography: reduction of radiation exposure versus a BMI-based strategy with an expert investigator. J Cardiovasc Comput Tomogr. 2013;7(5):303–10.

    Article  PubMed  Google Scholar 

  40. Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ. Radiation dose to patients from cardiac diagnostic imaging. Circulation. 2007;116(11):1290–305.

    Article  PubMed  Google Scholar 

  41. Leschka S, Kim C-H, Baumueller S, Stolzmann P, Scheffel H, Marincek B, et al. Scan length adjustment of CT coronary angiography using the calcium scoring scan: effect on radiation dose. AJR Am J Roentgenol. 2010;194(3):W272–7.

    Article  PubMed  Google Scholar 

  42. Bischoff B, Hein F, Meyer T, Hadamitzky M, Martinoff S, Schömig A, et al. Impact of a reduced tube voltage on CT angiography and radiation dose. JACC Cardiovasc Imaging. 2009;2(8):940–6.

    Article  PubMed  Google Scholar 

  43. Gutstein A, Dey D, Cheng V, Wolak A, Gransar H, Suzuki Y, et al. Algorithm for radiation dose reduction with helical dual source coronary computed tomography angiography in clinical practice. J Cardiovasc Comput Tomogr. 2008;2(5):311–22.

    Article  PubMed  Google Scholar 

  44. Leschka S, Stolzmann P, Schmid FT, Scheffel H, Stinn B, Marincek B, et al. Low kilovoltage cardiac dual-source CT: attenuation, noise, and radiation dose. Eur Radiol. 2008;18(9):1809–17.

    Article  PubMed  Google Scholar 

  45. Luaces M, Akers S, Litt H. Low kVp imaging for dose reduction in dual-source cardiac CT. Int J Cardiovasc Imaging. 2009;25(S2):165–75.

    Article  Google Scholar 

  46. Engel LC, Ferencik M, Liew GY, Karolyi M, Sidhu MS, Lee AM, et al. Ultra-low dose cardiac CT angiography at 80 kV using second generation dual-source CT: assessment of radiation dose and image quality. J Med Diagn Methods. 2012;1:104.

    Article  Google Scholar 

  47. Leipsic J, LaBounty TM, Mancini GBJ, Heilbron B, Taylor C, Johnson MA, et al. A prospective randomized controlled trial to assess the diagnostic performance of reduced tube voltage for coronary CT angiography. AJR Am J Roentgenol. 2011;196(4):801–6.

    Article  PubMed  Google Scholar 

  48. Lee AM, Engel LC, Hui GC, Liew G, Ferencik M, Sidhu MS, et al. Coronary computed tomography angiography at 140 kV versus 120 kV: assessment of image quality and radiation exposure in overweight and moderately obese patients. Acta Radiol. 2013;55(5):554–62.

    Article  PubMed  Google Scholar 

  49. Mulkens TH, Bellinck P, Baeyaert M, Ghysen D, Van Dijck X, Mussen E, et al. Use of an automatic exposure control mechanism for dose optimization in multi-detector row CT examinations: clinical evaluation. Radiology. 2005;237(1):213–23.

    Article  PubMed  Google Scholar 

  50. Tatsugami F, Husmann L, Herzog BA, Burkhard N, Valenta I, Gaemperli O, et al. Evaluation of a body mass index-adapted protocol for low-dose 64-MDCT coronary angiography with prospective ECG triggering. AJR Am J Roentgenol. 2009;192(3):635–8.

    Article  PubMed  Google Scholar 

  51. Weustink AC, Mollet NR, Neefjes LA, van Straten M, Neoh E, Kyrzopoulos S, et al. Preserved diagnostic performance of dual-source CT coronary angiography with reduced radiation exposure and cancer risk. Radiology. 2009;252(1):53–60.

    Article  PubMed  Google Scholar 

  52. Sabarudin A, Sun Z. Coronary CT angiography: dose reduction strategies. World J Cardiol. 2013;5(12):465–72.

    PubMed Central  PubMed  Google Scholar 

  53. Park YJ, Kim YJ, Lee JW, Kim HY, Hong YJ, Lee H-J, et al. Automatic tube potential selection with tube current modulation (APSCM) in coronary CT angiography: comparison of image quality and radiation dose with conventional body mass index-based protocol. J Cardiovasc Comput Tomogr. 2012;6(3):184–90.

    Article  PubMed  Google Scholar 

  54. Silva AC, Lawder HJ, Hara A, Kujak J, Pavlicek W. Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. AJR Am J Roentgenol. 2010;194(1):191–9.

    Article  PubMed  Google Scholar 

  55. Bittencourt MS, Schmidt B, Seltmann M, Muschiol G, Ropers D, Daniel WG, et al. Iterative reconstruction in image space (IRIS) in cardiac computed tomography: initial experience. Int J Cardiovasc Imaging. 2010;27(7):1081–7.

    Article  PubMed  Google Scholar 

  56. Yin WH, Lu B, Li N, Han L, Hou ZH, Wu RZ, et al. Iterative reconstruction to preserve image quality and diagnostic accuracy at reduced radiation dose in coronary CT angiography: an intraindividual comparison. JACC Cardiovasc Imaging. 2013;6(12):1239–49.

    Article  PubMed  Google Scholar 

  57. Tomizawa N, Nojo T, Akahane M, Torigoe R, Kiryu S, Ohtomo K. Adaptive iterative dose reduction in coronary CT angiography using 320-row CT: assessment of radiation dose reduction and image quality. J Cardiovasc Comput Tomogr. 2012;6(5):318–24.

    Article  PubMed  Google Scholar 

  58. Hou Y, Liu X, Xv S, Guo W, Guo Q. Comparisons of image quality and radiation dose between iterative reconstruction and filtered back projection reconstruction algorithms in 256-MDCT coronary angiography. AJR Am J Roentgenol. 2012;199(3):588–94.

    Article  PubMed  Google Scholar 

  59. Ghoshhajra BB, Engel LC, Major GP, Goehler A, Techasith T, Verdini D, et al. Evolution of coronary computed tomography radiation dose reduction at a tertiary referral center. Am J Med. 2012;125(8):764–72. Discuss the use of various radiation dose reduction strategies at a tertiary referral center.

  60. LaBounty TM, Earls JP, Leipsic J, Heilbron B, Mancini GB, Lin FY, et al. Effect of a standardized quality-improvement protocol on radiation dose in coronary computed tomographic angiography. Am J Cardiol. 2010;106(11):1663–7.

    Article  PubMed  Google Scholar 

  61. Raff GL, Chinnaiyan KM, Share DA, Goraya TY, Kazerooni EA, Moscucci M, et al. Radiation dose from cardiac computed tomography before and after implementation of radiation dose-reduction techniques. JAMA. 2009;301(22):2340–8.

    Article  CAS  PubMed  Google Scholar 

  62. Choi TY, Malpeso J, Li D, Sourayanezhad S, Budoff MJ. Radiation dose reduction with increasing utilization of prospective gating in 64-multidetector cardiac computed tomography angiography. J Cardiovasc Comput Tomogr. 2011;5(4):264–70.

    Article  PubMed  Google Scholar 

  63. Engel LC, Lee AM, Seifarth H, Sidhu MS, Brady TJ, Hoffmann U, et al. Weekly dose reports: the effects of a continuous quality improvement initiative on coronary computed tomography angiography radiation doses at a tertiary medical center. Acad Radiol. 2013;20(8):1015–23.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Ferencik received support from the American Heart Association (13FTF16450001).

Compliance with Ethics Guidelines

Conflict of Interest

Andy KW Chan, Maros Ferencik, and Suhny Abbara declare that they have no conflict of interest.

Brian Ghoshhajra reports institutional grants, and personal fees from Siemens Healthcare USA, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maros Ferencik.

Additional information

This article is part of the Tropical Collection on Cardiac Computed Tomography

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, A.K.W., Ferencik, M., Abbara, S. et al. Low Radiation Coronary CT. Curr Cardiovasc Imaging Rep 7, 9284 (2014). https://doi.org/10.1007/s12410-014-9284-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-014-9284-y

Keywords

Navigation