Skip to main content
Log in

Exposure to Environmental Chemicals and Human Bone Health; A Systematic Review and Meta-Analysis

  • Review Paper
  • Published:
Exposure and Health Aims and scope Submit manuscript

Abstract

Osteoporosis is a complex non-communicable disease characterized by low bone mineral density (BMD). Exposure to environmental factors such as air pollution and heavy metals has been linked to low BMD. This study aimed to review the emerging evidence investigating the associations between exposure to environmental chemicals and human bone mineral density or the risk of osteoporosis. A comprehensive electronic search was performed in PubMed, Web of Science, Scopus, and Embase up to March 3, 2022. Beta coefficients were extracted with 95% confidence intervals to calculate pooled mean differences for BMD in random effect models. For data synthesis, main exposure groups were identified using the Fourth National Report on Human Exposure to Environmental Chemicals, Centers for Disease Control and Prevention (CDC). Overall, 3181 records were identified. We reviewed 27 English articles with an analytical observational study design. In quantitative analysis, exposure to perfluorooctane sulfonate (PFOS) was significantly associated with low spinal BMD among women (mean difference = − 0.01 g/cm2, 95% CI − 0.02 to − 0.004 g/cm2). Up to date, there is supportive evidence for the inverse associations of perfluoroalkyl substances (PFASs) and phthalates with BMD. The association of polycyclic aromatic hydrocarbons (PAHs) with BMD seems to vary by specific urinary PAHs and bone sites. For bisphenols and organochlorinated pesticides (OCPs), the evidence for negative associations with BMD is insufficient. For other groups, including triclosan, polychlorobiphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs), the research is controversial or scant and needs to be extended. Available high-quality evidence supports the association between exposure to some environmental chemicals and lower BMD as well as increased risk of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data from the quantitative analysis of this review will be available upon reasonable request.

References

  • Ajiro Y, Tokuhashi Y, Matsuzaki H, Nakajima S, Ogawa T (2010) Impact of passive smoking on the bones of rats. Orthopedics 33:90–95

    Article  Google Scholar 

  • Akbal A, Yilmaz H, Tutkun E (2014) Arsenic exposure associated with decreased bone mineralization in male. Aging Male 17:256–258

    Article  CAS  Google Scholar 

  • Akhter MP, Lund AD, Gairola CG (2005) Bone biomechanical property deterioration due to tobacco smoke exposure. Calcif Tissue Int 77:319–326

    Article  CAS  Google Scholar 

  • Al-Bashaireh AM, Haddad LG, Weaver M, Chengguo X, Kelly DL, Yoon S (2018) The effect of tobacco smoking on bone mass: an overview of pathophysiologic mechanisms. J Osteoporos 2018:1206235

    Article  Google Scholar 

  • Banjabi AA, Li AJ, Kumosani TA, Yousef JM, Kannan K (2020) Serum concentrations of perfluoroalkyl substances and their association with osteoporosis in a population in Jeddah Saudi Arabia. Environ Res 187:109676

    Article  CAS  Google Scholar 

  • Baradaran Mahdavi S, Kelishadi R (2021) Air Pollution and Bone Mineral Density. In: Duncan LT (ed) Advances in Health and Disease. Nova Science Publishers Inc, New York, pp 143–172

    Google Scholar 

  • Baradaran Mahdavi S, Kelishadi R (2023) DNA methylation as a potential mediator between environmental pollutants and osteoporosis; a current hypothesis. Bioimpacts 13:521–523

    Article  Google Scholar 

  • Baradaran Mahdavi S, Daniali SS, Farajzadegan Z, Bahreynian M, Riahi R, Kelishadi R (2020) Association between maternal smoking and child bone mineral density: a systematic review and meta-analysis. Environ Sci Pollut Res Int 27:23538–23549

    Article  Google Scholar 

  • Beard J, Jong K, Beard J, Marshall S, Newton R, Triplett-mcbride T, Humphries B, Bronks R (2000) 1, 1, 1-Trichloro-2, 2-bis (p-Chlorophenyl)-Ethane (DDT) and reduced bone mineral density. Arch Environ Health 55:177–180

    Article  CAS  Google Scholar 

  • Bohannon AD, Cooper GS, Wolff MS, Mieier DE (2000) Exposure to 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDT) in relation to bone mineral density and rate of bone loss in menopausal women. Arch Environ Health 55:386–391

    Article  CAS  Google Scholar 

  • Brzoska MM, Moniuszko-Jakoniuk J (2004) Low-level lifetime exposure to cadmium decreases skeletal mineralization and enhances bone loss in aged rats. Bone 35:1180–1191

    Article  CAS  Google Scholar 

  • Buckley JP, Kuiper JR, Lanphear BP, Calafat AM, Cecil KM, Chen A, Xu Y, Yolton K, Kalkwarf HJ, Braun JM (2021) Associations of maternal serum perfluoroalkyl substances concentrations with early adolescent bone mineral content and density: the health outcomes and measures of the environment (HOME) study. Environ Health Perspect. https://doi.org/10.1289/EHP9424

    Article  Google Scholar 

  • Cai SF, Zhu JH, Sun LL, Fan CH, Zhong YH, Shen Q, Li YJ (2019) Association between urinary triclosan with bone mass density and osteoporosis in US adult women, 2005–2010. J Clin Endocrinol Metab 104:4531–4538

    Article  Google Scholar 

  • Chang KH, Chang MY, Muo CH, Wu TN, Hwang BF, Chen CY, Lin TH, Kao CH (2015) Exposure to air pollution increases the risk of osteoporosis: a nationwide longitudinal study. Medicine (baltimore) 94:e733

    Article  CAS  Google Scholar 

  • Chen X, Gan C, Zhu G, Jin T (2013) Benchmark dose for estimation of cadmium reference level for osteoporosis in a Chinese female population. Food Chem Toxicol 55:592–595

    Article  CAS  Google Scholar 

  • Cho GJ, Park HT, Shin JH, Hur JY, Kim SH, Lee KW, Kim T (2012) The relationship between blood mercury level and osteoporosis in postmenopausal women. Menopause 19:576–581

    Article  Google Scholar 

  • Cluett R, Seshasayee SM, Rokoff LB, Rifas-Shiman SL, Ye XY, Calafat AM, Gold DR, Coull B, Gordon CM, Rosen CJ, Oken E, Sagiv SK, Fleisch AF (2019) Per- and polyfluoroalkyl substance plasma concentrations and bone mineral density in midchildhood: a cross-sectional study (Project Viva, United States). Environ Health Perspect. https://doi.org/10.1289/EHP4918

    Article  Google Scholar 

  • Cooper C, Westlake S, Harvey N, Dennison E (2009) Developmental origins of osteoporotic fracture. Adv Exp Med Biol 639:217–236

    Article  CAS  Google Scholar 

  • Côté S, Ayotte P, Dodin S, Blanchet C, Mulvad G, Petersen HS, Gingras S, Dewailly É (2006) Plasma organochlorine concentrations and bone ultrasound measurements: a cross-sectional study in peri-and postmenopausal Inuit women from Greenland. Environ Health 5:1–10

    Article  Google Scholar 

  • Davis JA, Gift JS, Zhao QJ (2011) Introduction to benchmark dose methods and U.S. EPA’s benchmark dose software (BMDS) version 2.1.1. Toxicol Appl Pharmacol 254:181–191

    Article  CAS  Google Scholar 

  • de Villiers TJ, Goldstein SR (2022) Bone health 2022: an update. Climacteric 25:1–3

    Article  Google Scholar 

  • DeFlorio-Barker SA, Turyk ME (2016) Associations between bone mineral density and urinary phthalate metabolites among post-menopausal women: a cross-sectional study of NHANES data 2005–2010. Int J Environ Health Res 26:326–345

    Article  CAS  Google Scholar 

  • Di Nisio A, De Rocco PM, Giadone A, Rocca M, Guidolin D, Foresta C (2020) Perfluoroalkyl substances and bone health in young men: a pilot study. Endocrine 67:678–684

    Article  Google Scholar 

  • Duan W, Meng X, Sun Y, Jia C (2018) Association between polycyclic aromatic hydrocarbons and osteoporosis: data from NHANES, 2005–2014. Arch Osteoporos 13:112

    Article  Google Scholar 

  • Elonheimo H, Lange R, Tolonen H, Kolossa-Gehring M (2021) Environmental substances associated with osteoporosis–a scoping review. Int J Environ Res Public Health 18:738

    Article  CAS  Google Scholar 

  • Ensrud KE, Crandall CJ (2017) Osteoporosis. Ann Intern Med 167:Itc17–Itc32

    Article  Google Scholar 

  • Eskenazi B, Warner M, Sirtori M, Fuerst T, Rauch SA, Brambilla P, Mocarelli P, Rubinacci A (2014) Serum dioxin concentrations and bone density and structure in the Seveso women’s health study. Environ Health Perspect 122:51–57

    Article  Google Scholar 

  • Finnila MA, Zioupos P, Herlin M, Miettinen HM, Simanainen U, Hakansson H, Tuukkanen J, Viluksela M, Jamsa T (2010) Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on bone material properties. J Biomech 43:1097–1103

    Article  Google Scholar 

  • Frederiksen H, Kranich SK, Jørgensen N, Taboureau O, Petersen JH, Andersson A-M (2013) Temporal variability in urinary phthalate metabolite excretion based on spot, morning, and 24-h urine samples: considerations for epidemiological studies. Environ Sci Technol 47:958–967

    Article  CAS  Google Scholar 

  • Fukushi JI, Tokunaga S, Nakashima Y, Motomura G, Mitoma C, Uchi H, Furue M, Iwamoto Y (2016) Effects of dioxin-related compounds on bone mineral density in patients affected by the Yusho incident. Chemosphere 145:25–33

    Article  CAS  Google Scholar 

  • Gao SG, Li KH, Xu M, Jiang W, Shen H, Luo W, Xu WS, Tian J, Lei GH (2011) Bone turnover in passive smoking female rat: relationships to change in bone mineral density. BMC Musculoskelet Disord 12:131

    Article  CAS  Google Scholar 

  • Gao M, Sun L, Xu K, Zhang L, Zhang Y, He T, Sun R, Huang H, Zhu J, Zhang Y (2020) Association between low-to-moderate fluoride exposure and bone mineral density in Chinese adults: non-negligible role of RUNX2 promoter methylation. Ecotoxicol Environ Saf 203:111031

    Article  CAS  Google Scholar 

  • Glynn AW, Michaëlsson K, Lind PM, Wolk A, Aune M, Atuma S, Darnerud PO, Mallmin H (2000) Organochlorines and bone mineral density in Swedish men from the general population. Osteoporos Int 11:1036–1042

    Article  CAS  Google Scholar 

  • Gunson DE, Kowalczyk DF, Shoop CR, Ramberg CF Jr (1982) Environmental zinc and cadmium pollution associated with generalized osteochondrosis, osteoporosis, and nephrocalcinosis in horses. J Am Vet Med Assoc 180:295–299

    CAS  Google Scholar 

  • Guo J, Huang Y, Bian S, Zhao C, Jin Y, Yu D, Wu X, Zhang D, Cao W, Jing F, Chen G (2018) Associations of urinary polycyclic aromatic hydrocarbons with bone mass density and osteoporosis in U.S. adults, NHANES 2005–2010. Environ Pollut 240:209–218

    Article  CAS  Google Scholar 

  • Hodgson S, Thomas L, Fattore E, Lind PM, Alfven T, Hellström L, Håkansson H, Carubelli G, Fanelli R, Jarup L (2008) Bone mineral density changes in relation to environmental PCB exposure. Environ Health Perspect 116:1162–1166

    Article  CAS  Google Scholar 

  • Hsu Y-H, Kiel DP (2012) Genome-wide association studies of skeletal phenotypes: what we have learned and where we are headed. J Clin Endocrinol Metab 97:E1958–E1977

    Article  CAS  Google Scholar 

  • Hu Y, Liu G, Rood J, Liang LM, Bray GA, de Jonge L, Coull B, Furtado JD, Qi L, Grandjean P, Sun Q (2019) Perfluoroalkyl substances and changes in bone mineral density: a prospective analysis in the POUNDS-LOST study. Environ Res 179:108775

    Article  CAS  Google Scholar 

  • Ilvesaro J, Pohjanvirta R, Tuomisto J, Viluksela M, Tuukkanen J (2005) Bone resorption by aryl hydrocarbon receptor-expressing osteoclasts is not disturbed by TCDD in short-term cultures. Life Sci 77:1351–1366

    Article  CAS  Google Scholar 

  • Jackson RD, Mysiw WJ (2014) Insights into the epidemiology of postmenopausal osteoporosis: the Women’s Health Initiative. Semin Reprod Med 32:454–462

    Article  Google Scholar 

  • Jalili C, Kazemi M, Taheri E, Mohammadi H, Boozari B, Hadi A, Moradi S (2020) Exposure to heavy metals and the risk of osteopenia or osteoporosis: a systematic review and meta-analysis. Osteoporos Int 31:1671–1682

    Article  CAS  Google Scholar 

  • James KA, Meliker JR (2013) Environmental cadmium exposure and osteoporosis: a review. Int J Public Health 58:737–745

    Article  Google Scholar 

  • Jeddy Z, Tobias JH, Taylor EV, Northstone K, Flanders WD, Hartman TJ (2018) Prenatal concentrations of perfluoroalkyl substances and bone health in British girls at age 17. Arch Osteoporos. https://doi.org/10.1007/s11657-018-0498-5

    Article  Google Scholar 

  • Khalil N, Chen A, Lee M, Czerwinski SA, Ebert JR, De Witt JC, Kannan K (2016) Association of perfluoroalkyl substances, bone mineral density, and osteoporosis in the U.S. population in NHANES 2009–2010. Environ Health Perspect 124:81–87

    Article  CAS  Google Scholar 

  • Khalil N, Ebert JR, Honda M, Lee M, Nahhas RW, Koskela A, Hangartner T, Kannan K (2018) Perfluoroalkyl substances, bone density, and cardio-metabolic risk factors in obese 8–12 year old children: a pilot study. Environ Res 160:314–321

    Article  CAS  Google Scholar 

  • Kietz S, Thomsen JS, Matthews J, Pettersson K, Ström A, Gustafsson J-Å (2004) The Ah receptor inhibits estrogen-induced estrogen receptor β in breast cancer cells. Biochem Biophys Res Commun 320:76–82

    Article  CAS  Google Scholar 

  • Kim TS, Kim CY, Lee HK, Kang IH, Kim MG, Jung KK, Kwon YK, Nam HS, Hong SK, Kim HS, Yoon HJ, Rhee GS (2011) Estrogenic activity of persistent organic pollutants and parabens based on the stably transfected human estrogen receptor-α transcriptional activation assay (OECD TG 455). Toxicol Res 27:181–184

    Article  CAS  Google Scholar 

  • Kim DH, Oh CH, Hwang YC, Jeong IK, Ahn KJ, Chung HY, Chang JS (2012) Serum bisphenol a concentration in postmenopausal women with osteoporosis. J Bone Metab 19:87–93

    Article  Google Scholar 

  • Kim S, Kim S, Won S, Choi K (2017) Considering common sources of exposure in association studies-urinary benzophenone-3 and DEHP metabolites are associated with altered thyroid hormone balance in the NHANES 2007–2008. Environ Int 107:25–32

    Article  CAS  Google Scholar 

  • Kimball JS, Johnson JP, Carlson DA (2021) Oxidative stress and osteoporosis. J Bone Joint Surg Am 103:1451–1461

    Article  Google Scholar 

  • Kuiper JR, Braun JM, Calafat AM, Lanphear BP, Cecil KM, Chen AM, Xu YY, Yolton K, Kalkwarf HJ, Buckley JP (2022) Associations of pregnancy phthalate concentrations and their mixture with early adolescent bone mineral content and density: the health outcomes and measures of the environment (HOME) study. BONE 154:116251

    Article  CAS  Google Scholar 

  • Lane NE (2006) Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol 194:S3-11

    Article  CAS  Google Scholar 

  • Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J (2007) Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci 99:366–394

    Article  CAS  Google Scholar 

  • Law MR, Hackshaw AK (1997) A meta-analysis of cigarette smoking, bone mineral density and risk of hip fracture: recognition of a major effect. BMJ 315:841–846

    Article  CAS  Google Scholar 

  • Lin LY, Wen LL, Su TC, Chen PC, Lin CY (2014) Negative association between serum perfluorooctane sulfate concentration and bone mineral density in US premenopausal women: NHANES, 2005–2008. J Clin Endocrinol Metab 99:2173–2180

    Article  CAS  Google Scholar 

  • Lind PM, Milnes MR, Lundberg R, Bermudez D, Orberg JA, Guillette LJ Jr (2004) Abnormal bone composition in female juvenile American alligators from a pesticide-polluted lake (Lake Apopka, Florida). Environ Health Perspect 112:359–362

    Article  CAS  Google Scholar 

  • Liu JJ, Fu SB, Jiang J, Tang XL (2021) Association between outdoor particulate air pollution and the risk of osteoporosis: a systematic review and meta-analysis. Osteoporos Int 32:1911–1919

    Article  CAS  Google Scholar 

  • Sadegh Baradaran Mahdavi, Sara Zamani, Roya Riahi, Ensiyeh Taheri BV, Roya Kelishadi Exposure to environmental chemicals and human bone health; a systematic review and meta-analysis. PROSPERO 2022 CRD42022319232

  • Manocha A, Srivastava LM, Bhargava S (2017) Lead as a risk factor for osteoporosis in post-menopausal women. Indian J Clin Biochem 32:261–265

    Article  CAS  Google Scholar 

  • Marini F, Cianferotti L, Brandi M (2016) Epigenetic mechanisms in bone biology and osteoporosis: can they drive therapeutic choices? Int J Mol Sci 17:1329

    Article  Google Scholar 

  • Martiniakova M, Bobonova I, Omelka R, Grosskopf B, Chovancova H, Spankova J, Toman R (2013) Simultaneous subchronic exposure to selenium and diazinon as possible risk factor for osteoporosis in adult male rats. Acta Vet Scand 55:81

    Article  Google Scholar 

  • Mi KB, Min JY (2014) Urinary phthalate metabolites and the risk of low bone mineral density and osteoporosis in older women. J Clin Endocrinol Metab 99:E1997–E2003

    Article  Google Scholar 

  • Nguyen TV (2017) Air pollution: a largely neglected risk factor for osteoporosis. Lancet Planet Health 1:e311–e312

    Article  Google Scholar 

  • Noirrit-Esclassan E, Valera M-C, Tremollieres F, Arnal J-F, Lenfant F, Fontaine C, Vinel A (2021) Critical role of estrogens on bone homeostasis in both male and female: from physiology to medical implications. Int J Mol Sci 22:1568

    Article  CAS  Google Scholar 

  • Page MJ et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71

    Article  Google Scholar 

  • Pizzorno J, Pizzorno L (2021) Environmental toxins are a major cause of bone loss. Integr Med (encinitas) 20:10–17

    Google Scholar 

  • Pouresmaeili F, Kamalidehghan B, Kamarehei M, Goh YM (2018) A comprehensive overview on osteoporosis and its risk factors. Ther Clin Risk Manag 14:2029–2049

    Article  CAS  Google Scholar 

  • Preau JL Jr, Wong LY, Silva MJ, Needham LL, Calafat AM (2010) Variability over 1 week in the urinary concentrations of metabolites of diethyl phthalate and di(2-ethylhexyl) phthalate among eight adults: an observational study. Environ Health Perspect 118:1748–1754

    Article  CAS  Google Scholar 

  • Ranzani OT, Milà C, Kulkarni B, Kinra S, Tonne C (2020) Association of ambient and household air pollution with bone mineral content among adults in peri-urban South India. JAMA Netw Open 3:e1918504–e1918504

    Article  Google Scholar 

  • Reeves KW, Vieyra G, Grimes NP, Meliker J, Jackson RD, Wactawski-Wende J, Wallace R, Zoeller RT, Bigelow C, Hankinson SE, Manson JE, Cauley JA, Calafat AM (2021) Urinary phthalate biomarkers and bone mineral density in postmenopausal women. J Clin Endocrinol Metab 106:E2567–E2579

    Article  Google Scholar 

  • Reginster JY, Burlet N (2006) Osteoporosis: a still increasing prevalence. Bone 38:S4-9

    Article  Google Scholar 

  • Salari N, Ghasemi H, Mohammadi L, Behzadi MH, Rabieenia E, Shohaimi S, Mohammadi M (2021) The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. J Orthop Surg Res 16:609

    Article  Google Scholar 

  • Sun Y, Sun D, Zhou Z, Zhu G, Lei L, Zhang H, Chang X, Jin T (2008) Estimation of benchmark dose for bone damage and renal dysfunction in a Chinese male population occupationally exposed to lead. Ann Occup Hyg 52:527–533

    CAS  Google Scholar 

  • Suwazono Y, Sand S, Vahter M, Skerfving S, Lidfeldt J, Akesson A (2010) Benchmark dose for cadmium-induced osteoporosis in women. Toxicol Lett 197:123–127

    Article  CAS  Google Scholar 

  • The National Heart L, and Blood Institute (NHLBI) (2022): Study Quality Assessment Tools

  • van Meurs JB, Boer CG, Lopez-Delgado L, Riancho JA (2019) Role of epigenomics in bone and cartilage disease. J Bone Miner Res 34:215–230

    Article  Google Scholar 

  • van Zwol-Janssens C, Trasande L, Asimakopoulos AG, Martinez-Moral MP, Kannan K, Philips EM, Rivadeneira F, Jaddoe VWV, Santos S (2020) Fetal exposure to bisphenols and phthalates and childhood bone mass: a population-based prospective cohort study. Environ Res 186:109602

    Article  Google Scholar 

  • Vitku-Kubatova J, Kolatorova L, Franekova L, Blahos J, Simkova M, Duskova M, Skodova T, Starka L (2018) Endocrine disruptors of the bisphenol and paraben families and bone metabolism. Physiol Res 67:S455–S464

    Article  Google Scholar 

  • Wallin E, Rylander L, Jönssson BAG, Lundh T, Isaksson A, Hagmar L (2005) Exposure to CB-153 and p, p′-DDE and bone mineral density and bone metabolism markers in middle-aged and elderly men and women. Osteoporos Int 16:2085–2094

    Article  CAS  Google Scholar 

  • Wang L, Hu W, Xia Y, Wang X (2017) Associations between urinary polycyclic aromatic hydrocarbon metabolites and serum testosterone in US adult males: National Health and nutrition examination survey 2011–2012. Environ Sci Pollut Res 24:7607–7616

    Article  CAS  Google Scholar 

  • Wang NJ, Wang YY, Zhang HJ, Guo YY, Chen C, Zhang W, Wan H, Han JL, Lu YL (2020) Association of bone mineral density with nine urinary personal care and consumer product chemicals and metabolites: a national-representative, population-based study. Environ Int 142:105865

    Article  CAS  Google Scholar 

  • Weiss J, Wallin E, Axmon A, Jönsson BAG, Åkesson H, Janák K, Hagmar L, Bergman Å (2006) Hydroxy-PCBs, PBDEs, and HBCDDs in serum from an elderly population of Swedish fishermen’s wives and associations with bone density. Environ Sci Technol 40:6282–6289

    Article  CAS  Google Scholar 

  • Yıldızgören MT, Öziş TN, Baki AE, Tutkun E, Yılmaz H, Tiftik T, Ekiz T, Özgirgin N (2016) Evaluation of bone mineral density and 25-hydroxyvitamin D levels in subjects with silica exposure. Environ Health Prev Med 21:149–153

    Article  Google Scholar 

  • Zhang Y-J, Huang C, Lv Y-S, Ma S-X, Guo Y, Zeng EY (2021) Polycyclic aromatic hydrocarbon exposure, oxidative potential in dust, and their relationships to oxidative stress in human body: a case study in the indoor environment of Guangzhou South China. Environ Int 149:106405

    Article  CAS  Google Scholar 

  • Zhao HY, Bi YF, Ma LY, Zhao L, Wang TG, Zhang LZ, Tao B, Sun LH, Zhao YJ, Wang WQ, Li XY, Xu MY, Chen JL, Ning G, Liu JM (2012) The effects of bisphenol A (BPA) exposure on fat mass and serum leptin concentrations have no impact on bone mineral densities in non-obese premenopausal women. Clin Biochem 45:1602–1606

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sadegh Baradaran Mahdavi, M.D., is a researcher and physiatrist at Isfahan University of Medical Sciences. Sadegh Baradaran Mahdavi has participated in the clinician-scientist program of Iran’s Ministry of Health, Treatment and Medical Training. We want to thank the large team in the Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran, especially Dr. Motahar Heidari-Beni, for her mutual contribution.

Funding

None to declare.

Author information

Authors and Affiliations

Authors

Contributions

SBM: Conceptualization, Methodology, Software, Validation, Investigation, Writing—Original Draft, Writing—Review & Editing, Project administration. SZ: Methodology, Investigation, Writing—Original Draft. RR: Methodology, Software, Validation, Formal analysis, Data Curation, Writing—Original Draft. ET: Methodology, Validation, Investigation, Supervision. BV: Methodology, Investigation, Review & Editing. FS: Methodology, Investigation, Review & Editing. RK: Conceptualization, Investigation, Writing—Review & Editing, Visualization, Supervision, Project administration.

Corresponding authors

Correspondence to Roya Riahi or Roya Kelishadi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 31 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baradaran Mahdavi, S., Zamani, S., Riahi, R. et al. Exposure to Environmental Chemicals and Human Bone Health; A Systematic Review and Meta-Analysis. Expo Health (2023). https://doi.org/10.1007/s12403-023-00596-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12403-023-00596-3

Keywords

Navigation