Skip to main content
Log in

Occurrence and Evaluation of Methodologies to Detect Cryptosporidium spp. in Treated Water in the Central-West Region of Brazil

  • Original Paper
  • Published:
Exposure and Health Aims and scope Submit manuscript

Abstract

Cryptosporidium spp. are an emerging pathogen responsible for a large number of diarrhea outbreaks in humans throughout the world. However, the occurrence of epidemic outbreaks caused by this agent in Brazil is poorly known and still needs more attention mainly in the Central-West Region of Brazil, where yet are not studied. Furthermore, there is a need for cheaper or faster methods for detecting Cryptosporidium spp. (given the cost of Envirocheck® filters and IMS kits). Thus, the implementation of standard techniques that enable the identification and quantification of this agent for further study of environmental samples is important. This study aimed at evaluating and comparing immunological techniques for detection of antigen and a real-time PCR for detection and differentiation of Cryptosporidium spp. in samples of treated water. Samples were collected directly from the taps at the entrance of residences and concentrated by a positively charged membrane filter. Oocysts of Cryptosporidium spp. were detected by direct immunofluorescence, ELISA and real-time PCR techniques, and the results were positive in 56.3 % (18/32), 28.1 % (9/32) and 50.0 % (16/32), respectively. The survey results showed for the first time the presence of Cryptosporidium spp. in treated water in the Central-West Region of Brazil. Although real-time PCR showed less positive, it is the one that enables the identification of the species and less expensive when processing a large number of samples. Probably, it would be better to use both techniques, due to their own virtues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmed W, Brandes H, Gyawali P, Sidhu JPS, Toze S (2014) Opportunistic pathogens in roof-captured rainwater samples, determined using quantitative PCR. Article Water Res 53:361–369

    Article  CAS  Google Scholar 

  • Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MF (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52(5):399–451

    Article  Google Scholar 

  • Anusz KZ, Mason PH, Riggs MW, Perryman LE (1990) Detection of Cryptosporidium parvum oocysts in bovine feces by monoclonal antibody capture enzyme-linked immunosor assay. J Clin Microbiol 28:2770–2774

    CAS  Google Scholar 

  • Appelbee AJ, Thompson RCA, Olson ME (2005) Giardia and Cryptosporidium in mammalian wildlife—current status and future needs. Trends Parasitol 21:370–376

    Article  Google Scholar 

  • Araújo RS, Carvalho-Almeida TT, Matté GR, Rojas MVR, Pereira A, Matté MH (2005) Detecção de oocistos de Cryptosporidium spp. em amostras de água salobra. Bol Inst Adolfo Lutz 15:31–32

    Google Scholar 

  • Araújo AJUS, Gomes AHS, Almeida ME, Kanamura HY (2007) Detecção de Cryptosporidium meleagridis em amostras fecais de pacientes HIV positivos no Brasil. Rev Panam Infectol 9:38–40

    Google Scholar 

  • Carvalho-Almeida TT, Casimiro AM, Matte GR, Matte MH (2005) Na improved method for extracting Cryptosporidium spp. DNA from preserved faeces and potential application for cryptosporidiosis surveillance. Rev Bras Vig Sanit 1:208–231

    Google Scholar 

  • Doi Y (2009) Cryptosporidium Pig genotype II in immunocompetent man. Emerg Infect Dis 15(6):982–983

    Article  Google Scholar 

  • Fahey T (2003) Cryptosporidiosis. Infect Dis Update 10(2):75–80

    Google Scholar 

  • Feng Y, Ortega Y, Cama V, Terrell J, Xiao L (2008) High intragenotypic diversity of Giardia duodenalis in dairy cattle on three farms. Parasitol Res 103:87–92

    Article  Google Scholar 

  • Francino O, Altet L, Sanchez-Robert E, Rodriguez A, Solano-Gallego L, Alberola J, Ferrer L, Sanchez A, Roura X (2006) Advantages of real-time PCR assay for diagnosis and monitoring of canine leishmaniosis. Vet Parasitol 137:214–221

    Article  CAS  Google Scholar 

  • Franco, RMB Elayse MH, Maria Ines ZS, Rita Maria LM, Eduardo de CS, Marcela MCC, Romeu CN, Daniel AC, Nilson B, Diego AGL (2012) Avaliação da performance de metodologias de detecção de Cryptosporidium spp. e Giardia spp. em água destinada ao consumo humano, para o atendimento às demandas da Vigilância em Saúde Ambiental no Brasil. Epidemiol. Serv. Saúde [online] 21(2), 233–242. ISSN 1679-4974

  • Gertler M, Dürr M, Renner P, Poppert S, Askar M, Breidenbach J, Frank C, Preußel K, Schielke A, Werber D, Chalmers R, Robinson G, Feuerpfeil I, Tannich E, Gröger C, Stark K, Wilking H (2015) Outbreak of Cryptosporidium hominis following river flooding in the city of Halle (Saale), Germany, August 2013. BMC Infect Dis 15:88

    Article  Google Scholar 

  • Gomes AHS, Kanamura HE, Almeida ME, Araújo AJUS (2004) Detecção de Cryptosporidium em amostras fecais por técnica de Nested – PCR e comparação com métodos imunológicos e parasitológicos. Revista Instituto Adolfo Lutz 2(63):255–261

    Google Scholar 

  • Gonçalves EM, Da Silva AJ, Eduardo MB, Uemura IH, Moura IN, Castilho VL, Corbett CE (2006) Multilocus genotyping of Cryptosporidium hominis associated with diarrhea outbreak in a day care unit in São Paulo. Clinics 61:119–126

    Article  Google Scholar 

  • Gonzáles-Ruiz A, Bendall R (1985) Size matters: the use of the ocular micrometer in diagnostic parasitology. Parasitol Today 11:83–85

    Article  Google Scholar 

  • Guy RA, Payment P, Krull UJ, Horgen PA (2003) Real-time PCR for quantification of Giardia and Cryptosporidium in environmental water samples and sewage. Appl Environ Microbiol 69(9):5178–5185

    Article  CAS  Google Scholar 

  • Hashimoto A, Sugimoto H, Morita S, Hirata T (2006) Genotyping of single Cryptosporidium oocysts in sewage by semi-nested PCR and direct sequencing. Water Res 40:2527–2532

    Article  CAS  Google Scholar 

  • Hlavasa MC, Watson JC, Beach MJ (2005) Cryptosporidiosis surveillance—United States 1999–2002. MMWR Surveill Summ 54:1–8

    Google Scholar 

  • Huber F, Da Silva S, Bomfim TC, Teixeira KR, Bello AR (2007) Genotypic characterization and phylogenetic analysis of Cryptosporidium spp. from domestic animals in Brazil. Vet Parasitol 150:65–74

    Article  CAS  Google Scholar 

  • Huck PM, Coffey BM, Emelko MB, Maurizio DD (2002) Effects of filter operation on Cryptosporidium removal. J Am Water Works Assoc 94(6):97–111

    CAS  Google Scholar 

  • Jex AR, Smith HV, Monis PT, Campbell BE, Gasser RB (2008) Cryptosporidium—biotechnological advances in the detection, diagnosis and analysis of genetic variation. Biotechnol Adv 26:304–317

    Article  CAS  Google Scholar 

  • Jothikumar N, Silva AJ, Moura I, Qvarnstrom Y, Hill VR (2008) Detection and differentiation of Cryptosporidium hominis and Cryptosporidium parvum by dual TaqMan assays. J Med Microbiol 57:1099–1105

    Article  CAS  Google Scholar 

  • Karanis P, Kourenti C, Smith H (2007) Waterborne transmission of protozoan parasites: a world wide review of outbreaks and lessons learnt. J Wat Health 5:1–38

    Article  Google Scholar 

  • Keshavarz A, Haghighi A, Athari A, Kazemi B, Abadi A, Mojarad EN (2009) Prevalence and molecular characterization of bovine Cryptosporidium in Qazvin province, Iran. Vet Parasitol 160(3–4):316–318

    Article  CAS  Google Scholar 

  • King B, Fanok S, Phillips R, Swaffer B, Monis P (2015) Integrated Cryptosporidium assay to determine oocyst density, infectivity, and genotype for risk assessment of source and reuse water. Appl Environ Microbiol 81:3471–3481. doi:10.1128/AEM.00163-15

    Article  CAS  Google Scholar 

  • Lake IR, Nichols G, Bentham G, Harrison FC, Hunter PR, Kovats SR (2007) Cryptosporidiosis decline after regulation, England and Wales, 1989–2005. Emerg Infect Dis 13:623–625

    Article  Google Scholar 

  • Le Chevallier MW, Norton WD (1992) Examining relationships between particle counts and Giardia, Cryptosporidium and turbidity. J Am Water Works Assoc 84(12):54–60

    CAS  Google Scholar 

  • Mackenzie WR, Hoxie NJ, Proctor ME, Gradus MS, Blaie KA, Peterson DE, Kazmierrczak JJ, Addiss DG, Fox KR, Rose JB, Davis JP (1994) A massive outbreak in Milwaukee of Cryptosporidium infection transmitted through the public water supply. New Engl J Med Boston 3:161–167

    Article  Google Scholar 

  • Mark AG, John B (1994) Incidence of respiratory cryptosporidiosis in Georgia Broilers: 1987–92. Avian Dis 38(2):358–360

    Article  Google Scholar 

  • Meireles MV, Soares RM, Dos Santos MM, Gennari SM (2006) Biological studies and molecular characterization of a Cryptosporidium isolate from ostriches (Struthio camelus). J Parasitol 92:623–626

    Article  CAS  Google Scholar 

  • Monis PT, Giglio S, Keegan AR, Andrew Thompson RC (2005) Emerging technologies for the detection and genetic characterization of protozoan parasites. Trends Parasitol 21:340–346

    Article  CAS  Google Scholar 

  • Morgan UM, Thompson RCA (1998) PCR detection of Cryptosporidium, the way forward? Parasitol Today 14:241–245

    Article  CAS  Google Scholar 

  • Palmateer G, Manz D, Jurkovic A, Mclnnis R, Unger S, Kwan KK, Dutka BJ (1999) Toxicant and parasite challenge of manz intermittent slow sand filter. Environ Toxicol 14:217–225

    Article  CAS  Google Scholar 

  • Pereira JT, Costa A, Silva MBO, Schuchard W, Osaki SC, Castro EA, Paulino RC, Thomaz-Soccol V (2008) Comparing the efficacy of chlorine, chlorine dioxide, and ozone in the inactivation of Cryptosporidium parvum in water from Paraná State, Southern Brazil. Appl Biochem Biotechnol 151:464–473

    Article  CAS  Google Scholar 

  • Pilai DR (2009) Cryptosporidium spp. Rabbit genotype, a newly identified human pathogen. Emerg Infect Dis 15(5):829–830

    Article  Google Scholar 

  • Plutzer J, Karanis P (2009) Genetic polymorphism in Cryptosporidium: an update. Vet Parasitol 165:187–199

    Article  CAS  Google Scholar 

  • Rodgers MR, Flanigan DJ, Jakubowsk W (1995) Identification of algae which interfere with the detection of Giardia cysts and Cryptosporidium oocysts and a method for alleviating this interference. Appl Environ Microbiol 61(10):3759–3763

    CAS  Google Scholar 

  • Santos SFO, Silva HD, Souza-Junior ES, Anunciação CE, Silveira-Lacerda EP, Vilanova-Costa CAST, Garcia-Zapata MTA (2010) Environmental monitoring of opportunistic protozoa in rivers and lakes in the neotropics based on yearly monitoring. Water Quality Exposure Health 2:1–8

    Article  Google Scholar 

  • Silva HD, Wosnjuk LAC, Santos SFO, Vilanova-Costa CAST, Pereira FC, Silveira-Lacerda EP, García zapata MTA, Anunciação CE (2010) Molecular detection of adenoviruses in lakes and Rivers of Goiânia, Goiás, Brazil. Food Environ Virol 2:35–40

    Article  CAS  Google Scholar 

  • Soba B, Petrovec M, Mioc V, Logar J (2006) Molecular characterization of Cryptosporidium isolates from humans in Slovenia. Clin Microbiol Infect 12:918–921

    Article  CAS  Google Scholar 

  • Soldan OCP, Vasquez FV, Varas G, Cordo GP, Soto JRV, Sanches-Moreno M, Gonzales IR, Lombardo MJR (2006) Intestinal parasitism in Peruvian children and molecular characterization of Cryptosporidium species. Parasitol Res 98:576–581

    Article  Google Scholar 

  • Souza SL, Gennari SM, Richtzenhain LJ, Pena HF, Funada R, Cortez A, Gregori F, Soares RM (2007) Molecular identification of Giardia duodenalis isolates from humans, dogs, cats and cattle from the state of São Paulo, Brazil, by sequence analysis of fragments of glutamate dehydrogenase (GDH) coding gene. Vet Parasitol 149:258–264

    Article  CAS  Google Scholar 

  • Stancari RCA (2013) Determinação da sensibilidade do teste de ELISA para pesquisa de Cryptosporidium spp. e Giardia spp. em amostras de águas brutas. Rev Inst Adolfo Lutz. São Paulo 72(3):234–238

  • Sunderlanda D, Graczyk TK, Tamanga L, Breyssea PN (2007) Impact of bathers on levels of Cryptosporidium parvum oocysts and Giardia lamblia cysts in recreational beach waters. Water Res 41:3483–3489

    Article  Google Scholar 

  • Thomaz A, Meireles MV, Soares RM, Pena HF, Gennari SM (2007) Molecular identification of Cryptosporidium spp. from fecal samples of felines, canines and bovines in the state of São Paulo, Brazil. Vet Parasitol 150:291–296

    Article  CAS  Google Scholar 

  • Trotz-Williams LA, Martin DS, Gatei W, Cama V, Peregrine AS, Martin SW, Nydam DV, Jamieson F, Xiao L (2006) Genotype and subtype analyses of Cryptosporidium isolates from dairy calves and humans in Ontario. Parasitol Res 99:346–352

    Article  CAS  Google Scholar 

  • Tyzzer EE (1907) A sporozoan found in the peptic glands of the common mouse. Proc Soc Exp Biol Med 5:12–13

    Article  Google Scholar 

  • Tyzzer EE (1912) Cryptosporidium parvum (sp. nov.), a coccidium found in the small intestine of the common mouse. Arch Protistenkd 26:394–412

    Google Scholar 

  • Tzipori S, Griffiths JK (1998) Natural history and biology of Cryptosporidium parvum. Adv Parasitol 40:5–36

    Article  CAS  Google Scholar 

  • Tzipori S, Ward H (2002) Cryptosporidiosis: biology, pathogenesis and disease. Microbes Infect 4:1047–1058

    Article  Google Scholar 

  • Ungar B (1990) Enzyme-linked immunoassay for detection of Cryptosporidium antigens in fecal specimens. J Clin Micro 28(11):2491–2495

    CAS  Google Scholar 

  • Volotão AC, Costa-Macedo LM, Haddad FS, Brandão A, Peralta JM, Fernandes O (2007) Genotyping of Giardia duodenalis from human and animal samples from Brazil using beta-giardin gene: a phylogenetic analysis. Acta Trop 102:10–19

    Article  Google Scholar 

  • Xiao L (2010) Molecular epidemiology of cryptosporidiosis: an update. Exp Parasitol 124:80–89

    Article  CAS  Google Scholar 

  • Xiao L, Feng Y (2008) Zoonotic cryptosporidiosis. FEMS Immunol Med Microbiol 52:309–323

    Article  CAS  Google Scholar 

  • Xiao L, Sulaiman I, Fayer R, Lal AA (1998) Species and strain-specific typing of Cryptosporidium parasites in clinical and environmental samples. Memórias do Instituto Oswaldo Cruz 93(5):687–692

    Article  CAS  Google Scholar 

  • Xiao L, Morgan UM, Limor J, Escalante A, Arrowood M, Shulaw W, Thompson RC, Fayer R, Lal AA (1999) Genetic diversity within Cryptosporidium parvum and related Cryptosporidium species. Appl Environ Microbiol 65:3386–3391

    CAS  Google Scholar 

  • Xiao L, Singh A, Limor J, Graczyk TK, Gradus S, Lal A (2001) Molecular characterization of Cryptosporidium oocysts in samples of raw surface water and wastewater. Appl Environ Microbiol 67(3):1097–1101

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco T. A. García-Zapata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, S.F.O., Silva, H.D., Wosnjuk, L.A.C. et al. Occurrence and Evaluation of Methodologies to Detect Cryptosporidium spp. in Treated Water in the Central-West Region of Brazil. Expo Health 8, 117–123 (2016). https://doi.org/10.1007/s12403-015-0187-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12403-015-0187-1

Keywords

Navigation