Skip to main content

Advertisement

Log in

Designs, Performance and Economic Feasibility of Domestic Solar Dryers

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Present article is an overview of available solar drying technologies developed for small rural agricultural farms emphasizing domestic applications. A huge amount (about 61%) of perishable items gets wasted annually at the household level due to lack of awareness, negligence, improper handling, and inadequate storage facilities. Domestic solar dryers are reviewed and presented under the categories of natural and forced convection modes. The maximum attainable temperature inside the drying chamber under natural and forced convection mode is observed 98.6 and 78.1 °C, respectively. Thermal efficiency of solar dryers varies from 5.16 to 64.36% for the drying of various commodities. Natural convection solar dryers are appropriate for rural and undeveloped areas due to simple design and lower capital and electrical requirements. In comparison, forced convection solar dryers are more attractive due to better performance, higher drying rate, and lower drying time for high moisture content products. The designs of indirect and mixed-mode solar dryers seem very rare in the area of domestic solar drying. Solar dryers have potential to reduce the conventional drying cost by 50% and improve the return by 30%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. Ekechukwu OV, Norton B (1999) Review of solar-energy drying systems II: an overview of solar drying technology. Energy Convers Manag 40:615–655. https://doi.org/10.1016/s0140-6701(99)97881-5

    Article  CAS  Google Scholar 

  2. Lutz K, Mühlbauer W, Müller J, Reisinger G (1987) Development of a multi-purpose solar crop dryer for arid zones. Sol Wind Technol 4:417–424. https://doi.org/10.1016/0741-983X(87)90016-6

    Article  Google Scholar 

  3. FAO (2019) The state of food and agriculture 2019. Moving forward on food loss and waste reduction. Rome

  4. United Nations Environment Programme (2021) Food Waste Index Report 2021. Nairobi

  5. NAAS (2019) Saving the harvest: reducing the food loss and waste. Policy Brief No. 5, National Academy of Agricultural Sciences, New Delhi

  6. Stanley KE, Colo FC (1980) Solar food dryer. United States Patent. US4221059A

  7. Kumar M, Sansaniwal SK, Khatak P (2016) Progress in solar dryers for drying various commodities. Renew Sustain Energy Rev 55:346–360. https://doi.org/10.1016/j.rser.2015.10.158

    Article  Google Scholar 

  8. Shimpy, HM, Kumar M, Gupta M (2019) Recent developments and comprehensive review on greenhouse dryers. Trends and Advances in Mechanical Engineering (TAME 2019), Faridabad 23–31

  9. El Hage H, Herez A, Ramadan M et al (2018) An investigation on solar drying: a review with economic and environmental assessment. Energy 157:815–829. https://doi.org/10.1016/j.energy.2018.05.197

    Article  Google Scholar 

  10. Seerangurayar T, Al-Ismaili AM, Jeewantha LHJ, Al-Habsi NA (2019) Effect of solar drying methods on color kinetics and texture of dates. Food Bioprod Process 116:227–239. https://doi.org/10.1016/j.fbp.2019.03.012

    Article  Google Scholar 

  11. Mulokozi G, Svanberg U (2003) Effect of traditional open sun-drying and solar cabinet drying on carotene content and vitamin A activity of green leafy vegetables. Plant Foods Hum Nutr 58:1–15. https://doi.org/10.1023/b:qual.0000041153.288

    Article  Google Scholar 

  12. Navale SR, Harpale VM, Mohite KC (2015) Comparative study of open sun and cabinet solar drying for fenugreek leaves. Int J Renew Energy Technol Res 4:2325–3924

    Google Scholar 

  13. Belessiotis V, Delyannis E (2011) Solar drying. Sol Energy 85:1665–1691. https://doi.org/10.1016/j.solener.2009.10.001

    Article  Google Scholar 

  14. Sukhatme SP, Nayak JK (2017) Solar Energy, 4th ed. McGraw-Hill Education, New Delhi

  15. Chavan A, Vitankar V, Mujumdar A, Thorat B (2020) Natural convection and direct type (NCDT) solar dryers: a review. Dry Technol. https://doi.org/10.1080/07373937.2020.1753065

    Article  Google Scholar 

  16. Prakash O, Kumar A, Sharaf-Eldeen YI (2016) Review on Indian solar drying status. Curr Sustain Energy Reports 3:113–120. https://doi.org/10.1007/s40518-016-0058-9

    Article  Google Scholar 

  17. Yaciuk G (1981) Solar crop drying. Solar Energy Conversion II. Pergamon, Ontario, pp 377–339

    Chapter  Google Scholar 

  18. Singh P, Gaur MK (2020) Review on development, recent advancement and applications of various types of solar dryers. Energy Sources A Recover Util Environ Eff 1–21. https://doi.org/10.1080/15567036.2020.1806951

  19. Mohana Y, Mohanapriya R, Anukiruthika T et al (2020) Solar dryers for food applications: Concepts, designs, and recent advances. Sol Energy 208:321–344. https://doi.org/10.1016/j.solener.2020.07.098

    Article  Google Scholar 

  20. Fournier M, Guinebault A (1995) The “shell” dryer-modelling and experimentation. Renew Energy 6:459–463

    Article  Google Scholar 

  21. Hallak H, Hilal J, Hilal F, Rahhal R (1996) The staircase solar dryer: Design and characteristics. Renew Energy 7:177–183. https://doi.org/10.1016/0960-1481(95)00127-1

    Article  Google Scholar 

  22. Wakjira M, Adugna D, Berecha G (2011) Determining slice thickness of banana (Musa spp.) for enclosed solar drying using solar cabinet dryer under ethiopian condition. Am J Food Technol 6:568–580. https://doi.org/10.3923/ajft.2011.568.580

    Article  Google Scholar 

  23. Rawat BS, Rawat PN, Pant PC, Joshi GC (2014) Evaluation of energetics and CO2 emission mitigation potential of natural convection solar dryer for amla. AU J Technol 18:75–81

    Google Scholar 

  24. Terres H, Chavez S, Lopez R, et al (2015) Study of the lemon drying process using a solar dryer. In: ASME 2015 9th International Conference on Energy Sustainability. San Diego, California, pp 1–6

  25. Daud LEI, Simate IN (2017) Drying kinetics of sliced pineapples in a solar conduction dryer. Energy Environ Res 7:14. https://doi.org/10.5539/eer.v7n2p14

    Article  Google Scholar 

  26. Poonia S, Singh AK, Santra P, Mishra D (2018) Design, development and performance evolution of a low-cost solar dryer. In: Chandra L, Dixit A (eds) Concentrated Solar Thermal Energy Technologies, Springer Proceedings in Energy. Singapore, Springer Nature, pp 219–223

    Google Scholar 

  27. Islam MMI, Islam MMI, Tusar M, Limon AH (2019) Effect of cover design on moisture removal rate of a cabinet type solar dryer for food drying application. Energy Procedia 160:769–776. https://doi.org/10.1016/j.egypro.2019.02.181

    Article  Google Scholar 

  28. Sharma VK, Sharma S, Ray RA, Garg HP (1986) Design and performance studies of a solar dryer suitable for rural applications. Energy Convers Manag 26:111–119. https://doi.org/10.1016/0196-8904(86)90040-3

    Article  Google Scholar 

  29. Thanvi KP, Pande PC (1987) Development of a low-cost solar agricultural dryer for arid regions of India. Energy Agric 6:35–40. https://doi.org/10.1016/0167-5826(87)90020-9

    Article  Google Scholar 

  30. Sharma S, Sharma VK, Jha R, Ray RA (1990) Evaluation of the performance of a cabinet type solar dryer. Energy Convers Manag 30:75–80. https://doi.org/10.1016/0196-8904(90)90016-R

    Article  Google Scholar 

  31. Ezekoye BA, Enebe OM (2006) Development and performance evaluation of modified integrated passive solar grain dryer. Pacific J Sci Technol 7:185–190

    Google Scholar 

  32. Singh PP, Singh S, Dhaliwal SS (2006) Multi-shelf domestic solar dryer. Energy Convers Manag 47:1799–1815. https://doi.org/10.1016/j.enconman.2005.10.002

    Article  Google Scholar 

  33. Rawat BS, Pant PC, Joshi GC (2009) Energetics study of a natural convection solar crop dryer. Int J Ambient Energy 30:193–198. https://doi.org/10.1080/01430750.2009.9675096

    Article  Google Scholar 

  34. Alonge AF, Omoniwa AO (2012) Development and modification of a direct passive solar dryer. In: NABEC-CSBE/SCGAB 2012 Joint Meeting and Technical Conference Northeast Agricultural & Biological Engineering Conference Canadian Society for Bioengineering. Orillia, Ontario, pp 1–10

  35. Alonge AF, Adeboye OA (2012) Drying rates of some fruits and vegetables with passive solar dryers. Int J Agric Biol Eng 5. https://doi.org/10.3965/j.ijabe.20120504.00

  36. Tefera A, Endalew W, Fikiru B (2013) Evaluation and demonstration of direct solar potato dryer. Livest Res Rural Dev 25:1–7

    Google Scholar 

  37. Eke AB (2013) Development of small scale direct mode natural convection solar dryer for tomato, okra and carrot. Int J Eng Adv Technol 3:199–204

    Google Scholar 

  38. Raju RVS, Reddy RM, Reddy ES (2013) Design and fabrication of efficient solar dryer. J Eng Res Appl 3:1445–1458

    Google Scholar 

  39. Eke AB (2014) Investigation of low cost solar collector for drying vegetables in rural areas. Agric Eng Int CIGR J 16:118–125

    Google Scholar 

  40. Borah A, Hazarika K, Khayer SM (2015) Drying kinetics of whole and sliced turmeric rhizomes (Curcuma longa L.) in a solar conduction dryer. Inf Process Agric 2:85–92. https://doi.org/10.1016/j.inpa.2015.06.002

    Article  Google Scholar 

  41. Subedi TR, Bhattarai RN (2017) Experimental performance analysis of solar conduction dryer ( SCD ) for ginger drying. In: IOE Graduate Conference. pp 597–601

  42. Chaudhari RH, Bhavsar S (2017) Hybrid solar box type dryer cum cooker of chilly drying for domestic usage. Int J Sci Res 6:1614–1618

    Google Scholar 

  43. Chaudhari RH, Gora A, Modi VM, Chaudhari H (2018) Economic analysis of hybrid solar dryer for ginger drying. Int J Curr Microbiol Appl Sci 7:2725–2731. https://doi.org/10.20546/ijcmas.2018.711.312

  44. Haque T, Tiwari M, Bose M, Kedare SB (2018) Drying kinetics, quality and economic analysis of a domestic solar dryer for agricultural products. Ina Lett 4:147–160. https://doi.org/10.1007/s41403-018-0052-1

    Article  Google Scholar 

  45. Ugwuoke IC, Ikechukwu IB, Ifianyi OE (2019) Design and development of a mixed-mode domestic solar dryer. Int J Eng Manuf 9:55–65. https://doi.org/10.5815/ijem.2019.03.05

    Article  Google Scholar 

  46. Chavan A, Vitankar V, Thorat B (2020) CFD modeling and experimental study of solar conduction dryer. Dry Technol 39:1087–1100. https://doi.org/10.1080/07373937.2020.1846051

    Article  CAS  Google Scholar 

  47. Ampratwum DB, Dorvlo ASSS (1998) Evaluation of a solar cabinet dryer as an air-heating system. Appl Energy 59:63–71. https://doi.org/10.1016/S0306-2619(97)00043-3

    Article  Google Scholar 

  48. Bolaji B (2005) Development and performance evaluation of a box-type absorber solar air collector for crop drying. J Food Technol 3:595–600

    Google Scholar 

  49. Mwithiga G, Kigo SN (2006) Performance of a solar dryer with limited sun tracking capability. J Food Eng 74:247–252. https://doi.org/10.1016/j.jfoodeng.2005.03.018

    Article  Google Scholar 

  50. Kumar N, Agravat S, Chavda T, Mistry HN (2008) Design and development of efficient multipurpose domestic solar cookers/dryers. Renew Energy 33:2207–2211. https://doi.org/10.1016/j.renene.2008.01.010

    Article  Google Scholar 

  51. Saleh A, Badran I (2009) Modeling and experimental studies on a domestic solar dryer. Renew Energy 34:2239–2245. https://doi.org/10.1016/j.renene.2009.03.001

    Article  CAS  Google Scholar 

  52. Abdullahi Y, Momoh M, Garba MM, Musa M (2013) Design and construction of an adjustable and collapsible natural convection solar food dryer. Int J Comput Eng Res 3:1–8

    Google Scholar 

  53. Ozuomba JO, Okonkwo NA, Uzor BC, Uba JI (2013) Fabrication and characterization of a direct absorption solar dryer. Adv Appl Sci Res 4:186–194

    Google Scholar 

  54. Mustapha MK, Salako AF, Ademola SK, Adefila IA (2014) Qualitative performance and economic analysis of low cost solar fish driers in Sub-Saharan Africa. J Fish 2:64

    Article  Google Scholar 

  55. Akpojaro J, Oyeyemi M (2015) Performance evaluation of a prototype solar dryer against the conventional sun-drying system in Nigeria. Br J Appl Sci Technol 9:411–418. https://doi.org/10.9734/bjast/2015/16308

    Article  Google Scholar 

  56. Chavan A, Sikarwar A, Tidke V, Thorat B (2018) Augmenting natural convection and conduction based solar dryer. 21st International Drying Symposium. València, Spain, pp 1357–1364

    Google Scholar 

  57. Sandali M, Boubekri A, Mennouche D (2018) Thermal behavior modeling of a cabinet direct solar dryer as influenced by sensible heat storage in a fractured porous medium. AIP Conf Proc 1968. https://doi.org/10.1063/1.5039173

  58. Mehata P, Jhala R, Harichandan A (2018) Design and mathematical modelling of mixed mode solar dryer applicable for small scale application. Int J Eng Res Mech Civ Eng 3:173–177

    Google Scholar 

  59. Jain A, Sharma M, Kumar A et al (2019) Computational fluid dynamics simulation and energy analysis of domestic direct-type multi-shelf solar dryer. J Therm Anal Calorim 136:173–184. https://doi.org/10.1007/s10973-018-7973-5

    Article  CAS  Google Scholar 

  60. Sandali M, Boubekri A, Mennouche D (2020) Thermal and economical study of a direct solar dryer with integration of different techniques of heat supply. In: Belasri A, Beldjilali S (eds) ICREEC 2019. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-15-5444-5_73

  61. Poonia S, Singh AK, Jain D (2018) Design development and performance evaluation of photovoltaic/thermal (PV/T) hybrid solar dryer for drying of ber (Zizyphus mauritiana) fruit. Cogent Eng 5:1–18. https://doi.org/10.1080/23311916.2018.1507084

    Article  Google Scholar 

  62. Poonia S, Singh AK, Jain D (2018) Mathematical modelling and techno-economic evaluation of hybrid photovoltaic-thermal forced convection solar drying of Indian jujube (Zizyphus mauritiana). J Agric Eng 55:74–88

    Google Scholar 

  63. Nabnean S, Nimnuan P (2020) Experimental performance of direct forced convection household solar dryer for drying banana. Case Stud Therm Eng 22:100787. https://doi.org/10.1016/j.csite.2020.100787

    Article  Google Scholar 

  64. Tiris C, Tiris M, Dincer I (1996) Experiments on a new small-scale solar dryer. Appl Therm Eng 16:183–187

    Article  Google Scholar 

  65. Sreekumar A, Manikantan PE, Vijayakumar KP (2008) Performance of indirect solar cabinet dryer. Energy Convers Manag 49:1388–1395. https://doi.org/10.1016/j.enconman.2008.01.005

    Article  CAS  Google Scholar 

  66. Gaikwad SS, Shinde AB, Mote AA, Kachare PS (2016) Design and construction of briefcase type portable solar dryer. In: Pawar PM et al (eds) Techno-Societal 2016. Springer, Cham, pp 771–778

    Google Scholar 

  67. Modi VM, Desai NN, Gora A (2017) Design and development of low cost solar dryer. AGRES - An Int e J 6:329–336

    Google Scholar 

  68. Mohsen HA, Abd El-Rahmam AA, Hassan HE (2019) Drying of tomato fruits using solar energy. Agric Eng Int CIGR J 21:204–215

    Google Scholar 

  69. Moghimi P, Rahimzadeh H, Ahmadpour A (2021) Experimental and numerical optimal design of a household solar fruit and vegetable dryer. Sol Energy 214:575–587. https://doi.org/10.1016/j.solener.2020.12.023

    Article  Google Scholar 

  70. Fagunwa AO, Koya OA, Faborode MO (2009) Development of an intermittent solar dryer for cocoa beans. Agric Eng Int CIGR J 11:1–14

  71. Eswara AR, Ramakrishnarao M (2013) Solar energy in food processing - a critical appraisal. J Food Sci Technol 50:209–227. https://doi.org/10.1007/s13197-012-0739-3

    Article  CAS  PubMed  Google Scholar 

  72. Seveda MS, Jhajharia D (2012) Design and performance evaluation of solar dryer for drying of large cardamom (Amomum subulatum). J Renew Sustain Energy 4. https://doi.org/10.1063/1.4769199

  73. Jangsawang W (2017) Meat products drying with a compact solar cabinet dryer. Energy Procedia 138:1048–1054. https://doi.org/10.1016/j.egypro.2017.10.103

    Article  Google Scholar 

  74. Alonge OI, Obayopo SO (2019) Computational fluid dynamics and experimental analysis of direct solar dryer for fish. Agric Eng Int CIGR J 21:108–117

    Google Scholar 

  75. Nimnuan P, Nabnean S (2020) Solar drying of galangal slices (alpinia galangal (linn.) swartz.) using household solar dryer. Suranaree J Sci Technol 27:1–8

    Google Scholar 

  76. Safri NAM, Zainuddin Z, Mohd Azmi MS et al (2020) Temperature performance of a portable solar greenhouse dryer with various collector design. Sains Malaysiana 49:2539–2545. https://doi.org/10.17576/jsm-2020-4910-19

    Article  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to Guru Jambheshwar University of Science & Technology, Hisar, India and the Centre for Energy and Environment, Delhi Technological University, Delhi, India, for providing the necessary facilities to compile this work.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Kumar.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimpy, Kumar, M. & Kumar, A. Designs, Performance and Economic Feasibility of Domestic Solar Dryers. Food Eng Rev 15, 156–186 (2023). https://doi.org/10.1007/s12393-022-09323-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-022-09323-1

Keywords

Navigation