Skip to main content
Log in

Physicochemical Phenomena in the Roasting of Cocoa (Theobroma cacao L.)

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

The quality of cocoa depends on both the origin of the cacao and the processing stages. The roasting process is critical because it develops the aroma and flavor, changing the beans’ chemical composition significantly by chemical reactions induced by thermal energy. Aspects have been identified as the main differences between bulk cocoa and fine cocoa, the effect of time and temperature on the formation of the flavor and aroma, and the differences between conductive heating in an oven, convective with airflow, and steam flow. Thermal energy initially causes drying, then non-enzymatic browning chemical reactions (Maillard reaction, Strecker degradation, oxidation of lipids, and polyphenols), which produce volatile and non-volatile chemical compounds related to the flavor and aroma of cocoa roasted. This review identified that the effect of the heating rate on the physicochemical conversion of cocoa is still unknown, and the process has not been evaluated in inert atmospheres, which could drastically influence the avoidance of oxidation reactions. The effect of particle size on the performance of product quality is still unknown. A more in-depth explanation of energy, mass, and chemical kinetic transfer phenomena in roasting is needed to allow a deep understanding of the effect of process parameters. In order to achieve the above challenges, experimentation and modeling under kinetic control (small-scale) are proposed to allow the evaluation of the effects of the process parameters and the development of new roasting technologies in favor of product quality. Therefore, this work seeks to encourage scientists to work under a non-traditional scheme and generate new knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data and code are not shared.

References

  1. Abhay SM, Hii CL, Law CL, Suzannah S, Djaeni M (2016) Effect of hot-air drying temperature on the polyphenol content and the sensory properties of cocoa beans. Int Food Res J 23:1479–1484

    CAS  Google Scholar 

  2. Aboud SA, Altemimi AB, RS Al-HiIphy A, Yi-Chen L, Cacciola F (2019) A Comprehensive Review on Infrared Heating Applications in Food Processing. Molecules 24(22):4125

    Article  CAS  Google Scholar 

  3. Afoakwa E, Paterson A, Fowler M, Ryan A (2008) Flavor formation and character in cocoa and chocolate: A critical review. Crit Rev Food Sci Nutr 48(9):840–857. https://doi.org/10.1080/10408390701719272

    Article  CAS  PubMed  Google Scholar 

  4. Afoakwa EO (2014) Cocoa Production and Processing Technology: Taylor & Francis

  5. Afoakwa EO, Quao J, Takrama J, Budu AS, Saalia FK (2013) Chemical composition and physical quality characteristics of Ghanaian cocoa beans as affected by pulp pre-conditioning and fermentation. J Food Sci Technol 50(6):1097–1105. https://doi.org/10.1007/s13197-011-0446-5

    Article  CAS  PubMed  Google Scholar 

  6. Ainhoa OA, Rafael F, Eva MP (2017) Health benefits of methylxanthines in neurodegenerative diseases. Mol Nutr Food Res 61(6):1600670. https://doi.org/10.1002/mnfr.201600670

    Article  CAS  Google Scholar 

  7. Alean J, Chejne F, Rojano B (2016) Degradation of polyphenols during the cocoa drying process. J Food Eng 189:99–105. https://doi.org/10.1016/j.jfoodeng.2016.05.026

    Article  CAS  Google Scholar 

  8. Andres-Lacueva C, Monagas M, Khan N, Izquierdo-Pulido M, Urpi-Sarda M, Permanyer J, Lamuela-Raventós RM (2008) Flavanol and flavonol contents of cocoa powder products: influence of the manufacturing process. J Agric Food Chem 56(9):3111–3117. https://doi.org/10.1021/jf0728754

    Article  CAS  PubMed  Google Scholar 

  9. Andruszkiewicz PJ, D’Souza RN, Altun I, Corno M, Kuhnert N (2019) Thermally-induced formation of taste-active 2,5-diketopiperazines from short-chain peptide precursors in cocoa. Food Res Int 121:217–228. https://doi.org/10.1016/j.foodres.2019.03.015

    Article  CAS  PubMed  Google Scholar 

  10. Aprotosoaie AC, Luca SV, Miron A (2016) Flavor chemistry of cocoa and cocoa products - an overview. Comprehensive Reviews in Food Science and Food Safety 15(1):73–91. https://doi.org/10.1111/1541-4337.12180

    Article  CAS  PubMed  Google Scholar 

  11. Aremu CY, Agiang MA, Ayatse JOI (1995) Nutrient and antinutrient profiles of raw and fermented cocoa beans. Plant Foods Hum Nutr 48(3):217–223. https://doi.org/10.1007/BF01088443

    Article  CAS  PubMed  Google Scholar 

  12. Ascrizzi R, Flamini G, Tessieri C, Pistelli L (2017) From the raw seed to chocolate: Volatile profile of Blanco de Criollo in different phases of the processing chain. Microchem J 133 (Supplement C):474–479. https://doi.org/10.1016/j.microc.2017.04.024

  13. Baghdadi YA, Hii Cl (2017) Mass transfer kinetics and effective diffusivities during cocoa roasting. J Eng Sci Technol 12(1):127-137

  14. Bandeira CM, Evangelista WP, Gloria MBA (2012) Bioactive amines in fresh, canned and dried sweet corn, embryo and endosperm and germinated corn. Food Chem 131(4):1355–1359. https://doi.org/10.1016/j.foodchem.2011.09.135

    Article  CAS  Google Scholar 

  15. Barišić V, Flanjak I, Tot A, Budeč M, Benšić M, Jozinović A, Ačkar Đ (2020) 5-Hydroxymethylfurfural and acrylamide content of cocoa shell treated with high voltage electrical discharge. Food Control 110:107043. https://doi.org/10.1016/j.foodcont.2019.107043

    Article  CAS  Google Scholar 

  16. Bart-Plange A, Baryeh EA (2003) The physical properties of Category B cocoa beans. J Food Eng 60(3):219–227. https://doi.org/10.1016/S0260-8774(02)00452-1

    Article  Google Scholar 

  17. Betulia (2020) Organic, Single - Variety Criollo, Guaranteed by grafting. 1. Retrieved from https://www.cacaobetulia.com/our-fine-flavour-criollo-cacao/

  18. Bhattacharya S (2014) Roasting and Toasting Operations in Food: Process Engineering and Applications Conventional and Advanced Food Processing Technologies (pp. 221–248): John Wiley & Sons, Ltd

  19. Bianchi, F. R., Moreschi, L., Gallo, M., Vesce, E., & Del Borghi, A. (2021). Environmental analysis along the supply chain of dark, milk and white chocolate: a life cycle comparison. The International Journal of Life Cycle Assessment, 26(4), 807-821. https://doi.org/10.1007/s11367-020-01817-6

  20. Bonvehi J (2005) Investigation of aromatic compounds in roasted cocoa powder. Eur Food Res Technol 221(1–2):19–29. https://doi.org/10.1007/s00217-005-1147-y

    Article  CAS  Google Scholar 

  21. Bonvehí JS (2005) Investigation of aromatic compounds in roasted cocoa powder. Eur Food Res Technol 221:19–29. https://doi.org/10.1007/s00217-005-1147-y

    Article  CAS  Google Scholar 

  22. Borda-Yepes VH, Chejne F, Granados DA, Rojano B, Raghavan VSG (2019) Mathematical particle model for microwave drying of leaves. Heat Mass Transf 55(10):2959–2974. https://doi.org/10.1007/s00231-019-02626-w

    Article  CAS  Google Scholar 

  23. Bordiga M, Locatelli M, Travaglia F, Coisson JD, Mazza G, Arlorio M (2015) Evaluation of the effect of processing on cocoa polyphenols: antiradical activity, anthocyanins and procyanidins profiling from raw beans to chocolate. Int J Food Sci Technol 50(3):840–848. https://doi.org/10.1111/ijfs.12760

    Article  CAS  Google Scholar 

  24. Buckholz LL, Daun H, Stier E, Trout R (1980) Influence of roasting time on sensory attributes of fresh roasted peanuts. J Food Sci 45:547–554

    Article  CAS  Google Scholar 

  25. Castro-Alayo EM, Idrogo-Vásquez G, Siche R, Cardenas-Toro FP (2019) Formation of aromatic compounds precursors during fermentation of Criollo and Forastero cocoa. Heliyon 5(1). https://doi.org/10.1016/j.heliyon.2019.e01157

  26. CBI MOFA (2019a) The European market potential for specialty cocoa. Retrieved from https://www.cbi.eu/market-information/cocoa-cocoa-products/specialty-cocoa/market-potential

  27. CBI MOFA (2019b) What is the demand for cocoa on the European market? https://www.cbi.eu/market-information/cocoa/trade-statistics/: Updated on Tuesday, September 17, 2019 - 12:00 Retrieved from https://www.cbi.eu/market-information/cocoa/trade-statistics/

  28. Copetti MV, Pereira JL, Iamanaka BT, Pitt JI, Taniwaki MH (2010) Ochratoxigenic fungi and ochratoxin A in cocoa during farm processing. Int J Food Microbiol 143(1):67–70. https://doi.org/10.1016/j.ijfoodmicro.2010.07.031

    Article  CAS  PubMed  Google Scholar 

  29. Coultate TP (2009) Food: The Chemistry of Its Components (R. S. o. Chemistry Ed. 5th ed.). Great Britain: Royal Society of Chemistry

  30. Counet C, Ouwerx C, Rosoux D, Collin S (2004) Relationship between procyanidin and flavor contents of cocoa liquors from different origins. J Agri Food Chem 52(20):6243-6249. https://doi.org/10.1021/jf040105b

  31. Croguennec T (2016) Non-Enzymatic Browning. In Wiley (Ed.), Handbook of Food Science and Technology 1 (pp. 133–157).

  32. Darin AS (2017) Elements of harmonized international standards for cocoa quality and flavour assessment. Paper presented at the Third Annual Seminar on Cocoa in the Americas Sonesta Hotel, Guayaquil, Ecuador. https://www.worldcocoafoundation.org/wp-content/uploads/files_mf/14738683452.D.Sukha.pdf. http://www.cocoaqualitystandards.org/fileadmin/templates/CocoaQuality/Uploads/Documents-and-reports/WG-Quality-Flavour-Standards-ENGLISH-11Set2017.pdf

  33. Darin AS, Umaharan P, Butler DR (2017) The Impact of Pollen Donor on Flavor in Cocoa. J Am Soc Hortic Sci 142(1):13–19. https://doi.org/10.21273/JASHS03817-16

  34. Davrieux F, Assemat S, Sukha DA, Bastianelli D, Boulanger R, Cros E (2007) Genotype characterization of cocoa into genetic groups through caffeine and theobromine content predicted by near infra red spectroscopy. Paper presented at the International Conference on Near Infrared Spectroscopy, Auckland, Nouvelle-Zélande. Paper without proceedings retrieved from

  35. Deus V, Cerqueira MB, Maciel L, Miranda L, Hirooka E, Soares S, Bispo E (2018) Influence of drying methods on cocoa (Theobroma cacao L.): antioxidant activity and presence of ochratoxin. Adv J Food Sci Technol 38:278–285

  36. Di Mattia C, Martuscelli M, Sacchetti G, Beheydt B, Mastrocola D, Pittia P (2014) Effect of different conching processes on procyanidin content and antioxidant properties of chocolate. Food Res Int 63:367–372. https://doi.org/10.1016/j.foodres.2014.04.009

    Article  CAS  Google Scholar 

  37. Ding YL, Forster RN, Seville JPK, Parker DJ (2001) Some aspects of heat transfer in rolling mode rotating drums operated at low to medium temperatures. Powder Technol 121(2):168–181. https://doi.org/10.1016/S0032-5910(01)00343-6

    Article  CAS  Google Scholar 

  38. Djikeng FT, Teyomnou WT, Tenyang N, Tiencheu B, Morfor AT, Touko BAH, Womeni HM (2018) Effect of traditional and oven roasting on the physicochemical properties of fermented cocoa beans. Heliyon 4(2):e00533. https://doi.org/10.1016/j.heliyon.2018.e00533

    Article  PubMed  PubMed Central  Google Scholar 

  39. Domínguez-Pérez LA, Concepción-Brindis I, Lagunes-Gálvez LM, Barajas-Fernández J, Márquez-Rocha FJ, García-Alamilla P (2019) Kinetic Studies and Moisture Diffusivity During Cocoa Bean Roasting 7(10):770

    Google Scholar 

  40. Eskes A, Ahnert D, Garcia Carrion L, Seguine E, Assemat S, Guarda D, Garcia RP (2012) Evidence on the effect of the cocoa pulp flavour environment during fermentation on the flavour profile of chocolates. Paper presented at the Conférence Internationale sur la Recherche Cacaoyère, Yaoundé, Cameroun. Paper without proceedings retrieved from

  41. Evans WC, Evans D (2009) Chapter 26 - Alkaloids. In: Evans WC, Evans D (eds) Trease and Evans’ Pharmacognosy, Sixteenth. W.B. Saunders, pp 353–415

    Chapter  Google Scholar 

  42. Farah DMH, Zaibunnisa AH, Misnawi J, Zainal S (2012) Effect of roasting process on the concentration of acrylamide and pyrizines in roasted cocoa beans from different origins. APCBEE Proc 4:204–208. https://doi.org/10.1016/j.apcbee.2012.11.034

    Article  CAS  Google Scholar 

  43. FDA FADA (2019) Requirements for Specific Standardized Cacao Products. Retrieved from Chaper I: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=163

  44. Fowler MS, Coutel F (2017) Cocoa beans: from tree to factory Beckett’s Industrial Chocolate Manufacture and Use (pp. 9–49).

  45. Frauendorfer, F., & Schieberle, P. (2008). Changes in Key Aroma Compounds of Criollo Cocoa Beans During Roasting. J Agri Food Chem 56(21): 10244–10251. https://doi.org/10.1021/jf802098f

  46. Frauendorfer F, Schieberle P (2019) Key aroma compounds in fermented Forastero cocoa beans and changes induced by roasting. Eur Food Res Technol 245(9):1907–1915. https://doi.org/10.1007/s00217-019-03292-2

    Article  CAS  Google Scholar 

  47. García-Alamilla P, Lagunes-Gálvez LM, Barajas-Fernández J, García-Alamilla R (2017) Physicochemical Changes of Cocoa Beans during Roasting Process. J Food Qual 2017:2969324. https://doi.org/10.1155/2017/2969324

    Article  CAS  Google Scholar 

  48. García J, González ML (2019). Pyrazines in thermally treated foods Reference Module in Food Science (pp. 353–362): Elsevier

  49. Garza-Garza O, Duduković MP (1982) A variable size grain model for gas-solid reactions with structural changes. Chem Eng J 24(1):35–45. https://doi.org/10.1016/0300-9467(82)80048-8

    Article  CAS  Google Scholar 

  50. Georgakis C, Chang CW, Szekely J (1979) A changing grain size model for gas—solid reactions. Chem Eng Sci 34(8):1072–1075. https://doi.org/10.1016/0009-2509(79)80012-3

    Article  Google Scholar 

  51. Giacometti J, Jolić SM, Josić D (2015) Chapter 73 - Cocoa processing and impact on composition Processing and Impact on Active Components in Food. Academic Press, San Diego, pp 605–612

    Book  Google Scholar 

  52. Giacometti J, Muhvić D, Pavletić A, Ðudarić L (2016) Cocoa polyphenols exhibit antioxidant, anti-inflammatory, anticancerogenic, and anti-necrotic activity in carbon tetrachloride-intoxicated mice. Journal of Functional Foods 23:177–187. https://doi.org/10.1016/j.jff.2016.02.036

    Article  CAS  Google Scholar 

  53. Gökmen V, Palazoğlu TK (2008) Acrylamide Formation in Foods during Thermal Processing with a Focus on Frying. Food Bioprocess Technol 1(1):35–42. https://doi.org/10.1007/s11947-007-0005-2

    Article  Google Scholar 

  54. González Y, Pérez E, Palomino C (2012) Factores que inciden en la calidad sensorial del chocolate. Actualización en nutrición 13(4), 314–331. http://cadenacacaoca.info/estudios-cacao/CEDOC/ficha.php?id=1781

  55. Granados DA, Chejne F, Basu P (2016) A two dimensional model for torrefaction of large biomass particles. J Anal Appl Pyrol 120:1–14. https://doi.org/10.1016/j.jaap.2016.02.016

    Article  CAS  Google Scholar 

  56. Guillén-Casla V, Rosales-Conrado N, León-González ME, Pérez-Arribas LV, Polo-Díez LM (2012) Determination of serotonin and its precursors in chocolate samples by capillary liquid chromatography with mass spectrometry detection. J Chromatogr A 1232:158–165. https://doi.org/10.1016/j.chroma.2011.11.037

    Article  CAS  PubMed  Google Scholar 

  57. Hedegaard RV, Skibsted LH (2013) 16 - Shelf-life of food powders. In: Bhandari B, Bansal N, Zhang M, Schuck P (eds) Handbook of Food Powders. Woodhead Publishing, pp 409–434

    Chapter  Google Scholar 

  58. Hii CL, Borém FM (2019) Drying and Roasting of Cocoa and Coffee: CRC Press. https://doi.org/10.1201/9781315113104

  59. Hii CL, Menon AS, Chiang CL, Sharif S (2016) Kinetics of hot air roasting of cocoa nibs and product quality. J Food Process Eng. https://doi.org/10.1111/jfpe.12467

    Article  Google Scholar 

  60. Hinneh M, Abotsi EE, Van de Walle D, Tzompa-Sosa DA, De Winne A, Simonis J, Dewettinck K (2019) Pod storage with roasting: A tool to diversifying the flavor profiles of dark chocolates produced from ‘bulk’ cocoa beans? (part I: aroma profiling of chocolates). Food Res Int 119:84–98. https://doi.org/10.1016/j.foodres.2019.01.057

    Article  CAS  PubMed  Google Scholar 

  61. Ho VTT, Zhao J, Fleet G (2014) Yeasts are essential for cocoa bean fermentation. Int J Food Microbiol 174:72–87. https://doi.org/10.1016/j.ijfoodmicro.2013.12.014

    Article  CAS  PubMed  Google Scholar 

  62. Horta-Téllez HB, Sandoval-Aldana AP, Garcia-Muñoz MC, Cerón-Salazar IX (2019) Evaluation of the fermentation process and final quality of five cacao clones from the department of Huila, Colombia. J DYNA 86, 233–239

  63. Huang Y, Barringer SA (2010) Alkylpyrazines and Other Volatiles in Cocoa Liquors at pH 5 to 8, by Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS). J Food Sci 75(1):C121–C127. https://doi.org/10.1111/j.1750-3841.2009.01455.x

    Article  CAS  PubMed  Google Scholar 

  64. Huang Y, Barringer SA (2011) Monitoring of Cocoa Volatiles Produced during Roasting by Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS). J Food Sci 76(2):C279–C286. https://doi.org/10.1111/j.1750-3841.2010.01984.x

    Article  CAS  PubMed  Google Scholar 

  65. ICCO ICO (2012) Physical and chemical information on cocoa beans, butter, mass and powder. The ICCO International Cocoa p. 1. Retrieved from https://www.icco.org/faq/61-physical-and-chemical-information-on-cocoa/106-physical-and-chemical-information-on-cocoa-beans-butter-mass-and-powder.html

  66. ICCO ICO (2018) Study of the Chemical, Physical and Organoleptic Parameters to Establish the Difference Between Fine and Bulk Cocoa. Retrieved from www.icco.org: https://www.icco.org/study-of-the-chemical-physical-and-organoleptic-parameters-to-establish-the-difference-between-fine-and-bulk-cocoa/

  67. ICCO ICO (2019) The Chocolate Industry. Retrieved from https://www.icco.org/about-cocoa/chocolate-industry.html

  68. Ioannone F, Di Mattia CD, De Gregorio M, Sergi M, Serafini M, Sacchetti G (2015) Flavanols, proanthocyanidins and antioxidant activity changes during cocoa (Theobroma cacao L.) roasting as affected by temperature and time of processing. Food Chem 174:256–262. https://doi.org/10.1016/j.foodchem.2014.11.019

    Article  CAS  PubMed  Google Scholar 

  69. ISO:1114 (1977) Cocoa beans — Cut test Revised by ISO 2451:2017 (Vol. ISO 1114:1977): https://www.iso.org/standard/5637.html

  70. ISO:2291 (1980) Cocoa beans — Determination of moisture content (Routine method) Revised by ISO 2451:2017 (Vol. ISO 2291:1980). Revised by ISO 2451:2017

  71. ISO:2451 (2014) Cocoa beans — Specification Revised by ISO 2451:2017 (Vol. ISO 2451:2014 ). https://www.iso.org/standard/56534.html: International Organization for Standardization.

  72. Januszewska R, Depypere F, Van Leuven I, Pradal P, Loobuyck K, Veinand B, Adringa N (2018) Hidden Persuaders in Cocoa and Chocolate. A Flavour Lexicon for Cocoa and Chocolate Sensory Professionals (E. Inc. Ed.). Elsevier Inc.: Woodhead Publishing

  73. Jayas Digvir S, Cenkowski S, Pabis S, Muir WE (1991) Review of Thin-Layer and wetting Equations. Dry Technol 9(3), 551–588. https://doi.org/10.1080/07373939108916697

  74. Jumnongpon R, Chaiseri S, Hongsprabhas P, Healy JP, Meade SJ, Gerrard JA (2012) Cocoa protein crosslinking using Maillard chemistry. Food Chem 134(1):375–380. https://doi.org/10.1016/j.foodchem.2012.02.189

    Article  CAS  Google Scholar 

  75. Katz DL, Doughty K, Ali A (2011) Cocoa and chocolate in human health and disease. Antioxid Redox Signal 15(10):2779–2811. https://doi.org/10.1089/ars.2010.3697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kongor JE, Hinneh M, de Walle DV, Afoakwa EO, Boeckx P, Dewettinck K (2016) Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile - A review. Food Res Int 82:44–52. https://doi.org/10.1016/j.foodres.2016.01.012

    Article  CAS  Google Scholar 

  77. Korbel E, Attal EH, Grabulos J, Lluberas E, Durand N, Morel G, Brat P (2012) Impact of temperature and water activity on enzymatic and non-enzymatic reactions development in reconstituted dried mango. Paper presented at the International Conference on Chemical Reactions in Food, Prague, République tchèque

  78. Kosman VM, Stankevich NM, Makarov VG, Tikhonov VP (2007) Biologically active substances in grated cocoa and cocoa butter. Vopr Pitan 76(3):62–67

    CAS  PubMed  Google Scholar 

  79. Kothe L, Zimmermann BF, Galensa R (2013) Temperature influences epimerization and composition of flavanol monomers, dimers and trimers during cocoa bean roasting. Food Chem 141(4):3656–3663. https://doi.org/10.1016/j.foodchem.2013.06.049

    Article  CAS  PubMed  Google Scholar 

  80. Koua BK, Koffi PME, Gbaha P (2019) Evolution of shrinkage, real density, porosity, heat and mass transfer coefficients during indirect solar drying of cocoa beans. J Saudi Soc Agric Sci. https://doi.org/10.1016/j.jssas.2017.01.002

    Article  Google Scholar 

  81. Krings U, Zelena K, Wu S, Berger R (2006) Thin-layer high-vacuum distillation to isolate volatile flavour compounds of cocoa powder. Eur Food Res Technol 223:675–681. https://doi.org/10.1007/s00217-006-0252-x

    Article  CAS  Google Scholar 

  82. Krysiak W (2011) Effects of convective and microwave roasting on the physicochemical properties of cocoa beans and cocoa butter extracted from this material. Grasas Aceites 62(4):467–478. https://doi.org/10.3989/gya.114910

    Article  CAS  Google Scholar 

  83. Learn JR (2018) The Maya civilization used chocolate as money. News from Science. https://doi.org/10.1126/science.aau6051

  84. Lippi D (2015) Sin and Pleasure: The History of Chocolate in Medicine. J Agric Food Chem 63(45):9936–9941. https://doi.org/10.1021/acs.jafc.5b00829

    Article  CAS  PubMed  Google Scholar 

  85. Lund MN, Ray CA (2017) Control of Maillard reactions in foods: Strategies and shemical mechanisms. J Agric Food Chem 65(23):4537–4552. https://doi.org/10.1021/acs.jafc.7b00882

    Article  CAS  PubMed  Google Scholar 

  86. MADR (2013) Guia Ambiental para el Cultivo de Cacao. Segunda edición 127. Bogotá D.C., Colombia

  87. Manley D (2000) 10 - Sugars and syrups. In: Manley D (ed) Technology of Biscuits, Crackers and Cookies, 3rd edn. Woodhead Publishing, pp 112–129

    Chapter  Google Scholar 

  88. Marseglia A, Musci M, Rinaldi M, Palla G, Caligiani A (2020) Volatile fingerprint of unroasted and roasted cocoa beans (Theobroma cacao L.) from different geographical origins. Food Res Int 132, 109101. https://doi.org/10.1016/j.foodres.2020.109101

  89. Mata Anchundia D, Rivero Herrada M, Segovia Montalvan EL (2018) Sistemas agroforestales con cultivo de cacao fino de aroma: entorno socioeconómico y productivo. Revista Cubana de Ciencias Forestales 6:103–115

    Google Scholar 

  90. Maya J.C, Chejne F. (2016) Novel model for non catalytic solid–gas reactions with structural changes by chemical reaction and sintering. Chem Eng Sci 142:258–268. https://doi.org/10.1016/j.ces.2015.11.036

    Article  CAS  Google Scholar 

  91. Mayer-Potschak, K., & Kurz, M. (1983). Cocoa Roasting: The Thermal Treatment of Cocoa Nibs : a Comparison of the New NARS System with Conventional Roasting Methods: Barth.

  92. Mba OI, Kwofie EM, Ngadi M (2019) Kinetic modelling of polyphenol degradation during common beans soaking and cooking. Heliyon 5(5):e01613. https://doi.org/10.1016/j.heliyon.2019.e01613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. McCabe W, Smith J, Harriott P (2005) Unit Operations of Chemical Engineering: McGraw-Hill Education

  94. Minifie BW (1989) Chocolate, Cocoa and Confectionery: Science and Technology: Springer

  95. Misnawi SJ, Jamilah B, S Nazamid (2005) Changes in polyphenol ability to produce astringency during roasting of cocoa liquor. J Sci Food Agric 85:917–924

    Article  CAS  Google Scholar 

  96. Mohos, F. A. (2017). Confectionery and Chocolate Engineering: Principles and Applications: Wiley. Print ISBN:9781405194709 |Online ISBN:9781444320527. https://doi.org/10.1002/9781444320527

  97. Montoya JI (2016) Kinetic Study and Phenomenological Modeling of a Biomass Particle during Fast Pyrolysis Process, in Processes and Energy, Universidad Nacional de Colombia - Sede Medellìn.: bdigital. p. 266.

  98. Morales FJ, Somoza V, Fogliano V (2012) Physiological relevance of dietary melanoidins. Amino Acids 42(4):1097–1109. https://doi.org/10.1007/s00726-010-0774-1

    Article  CAS  PubMed  Google Scholar 

  99. Morales FJ, Van Boekel MAJS (1997) A study on advanced maillard reaction in heated casein/sugar solutions: Fluorescence accumulation. Int Dairy J 7(11):675–683. https://doi.org/10.1016/S0958-6946(97)00071-X

    Article  CAS  Google Scholar 

  100. Nguyen HB, Pham DL, Nguyen VL (2019) A Study on the Breaking and Winnowing Machine for Cocoa Beans at Small Industrial Scale in Vietnam (Vol. 9)

  101. Niksiar A, Rahimi A (2009) A study on deviation of noncatalytic gas–solid reaction models due to heat effects and changing of solid structure. Powder Technol 193(1):101–109. https://doi.org/10.1016/j.powtec.2009.02.012

    Article  CAS  Google Scholar 

  102. Nursten HE (2005) The Maillard Reaction: Chemistry, Biochemistry, and Implications. Royal Society of Chemistry, Royal Society of Chemistry

    Google Scholar 

  103. Oliviero T, Capuano E, Cammerer B, Fogliano V (2009) Influence of roasting on the antioxidant activity and HMF formation of a cocoa bean model systems. J Agric Food Chem 57(1):147–152. https://doi.org/10.1021/jf802250j

    Article  CAS  PubMed  Google Scholar 

  104. Oracz N, Żyżelewicz D (2014) Influence of roasting conditions on the biogenic amine content in cocoa beans of different Theobroma cacao cultivars. Food Res Int 55:1–10. https://doi.org/10.1016/j.foodres.2013.10.032

    Article  CAS  Google Scholar 

  105. Pastore P, Favaro G, Badocco D, Tapparo A, Cavalli S, Saccani G (2005) Determination of biogenic amines in chocolate by ion chromatographic separation and pulsed integrated amperometric detection with implemented wave-form at Au disposable electrode. J Chromatogr A 1098(1):111–115. https://doi.org/10.1016/j.chroma.2005.08.065

    Article  CAS  PubMed  Google Scholar 

  106. Pätzold R, Brückner H (2006) Gas chromatographic determination and mechanism of formation of D-amino acids occurring in fermented and roasted cocoa beans, cocoa powder, chocolate and cocoa shell. Amino Acids 31(1):63. https://doi.org/10.1007/s00726-006-0330-1

    Article  CAS  PubMed  Google Scholar 

  107. Pérez-Esteve É, Lerma-García MJ, Fuentes A, Palomares C, Barat JM (2016) Control of undeclared flavoring of cocoa powders by the determination of vanillin and ethyl vanillin by HPLC. Food Control 67:171–176. https://doi.org/10.1016/j.foodcont.2016.02.048

    Article  CAS  Google Scholar 

  108. Quiroz CN, Fogliano V (2018) Design cocoa processing towards healthy cocoa products: The role of phenolics and melanoidins. J Funct Foods 45:480–490. https://doi.org/10.1016/j.jff.2018.04.031

  109. Ramli N, Hassan O, Said M, Samsudin W, Idris NA (2006) Influence of roasting conditions on volatile flavor of roasted Malaysian cocoa beans. J Food Process Preserv 30(3):280–298. https://doi.org/10.1111/j.1745-4549.2006.00065.x

    Article  CAS  Google Scholar 

  110. Rawel HM, Huschek G, Sagu ST, Homann T (2019) Cocoa Bean Proteins-Characterization, Changes and Modifications due to Ripening and Post-Harvest Processing. Nutrients 11(2):428. https://doi.org/10.3390/nu11020428

    Article  CAS  PubMed Central  Google Scholar 

  111. Reineccius G (2005) Flavor Chemistry and Technology: CRC Press. https://doi.org/10.1201/9780203485347

  112. Rocha, I. S., Santana, L. R. R. d., Soarez, S. E., & Bispo, E. d. S. (2017). Effect of the roasting temperature and time of cocoa beans on the sensory characteristics and acceptability of chocolate. Food Sci Technol 37(4):522-530. https://doi.org/10.1590/1678-457x.16416 

  113. Rodriguez J, Escalona HB, Contreras-Ramos SM, Orozco-Avila I, Jaramillo-Flores E, Lugo-Cervantes E (2012) Effect of fermentation time and drying temperature on volatile compounds in cocoa. Food Chem 132(1):277–288. https://doi.org/10.1016/j.foodchem.2011.10.078

    Article  CAS  Google Scholar 

  114. Rohan TA, Stewart T (1967) The Precursors of Chocolate Aroma: Production of Reducing Sugars during Fermentation of Cocoa Beans. J Food Sci 32(4), 399–402. https://doi.org/10.1111/j.1365-2621.1967.tb09694.x

  115. Rojas M, Chejne F, Ciro H, Montoya J (2020) Roasting impact on the chemical and physical structure of Criollo cocoa variety (Theobroma cacao L). J Food Process Eng e13400. https://doi.org/10.1111/jfpe.13400

  116. Sacchetti G, Ioannone F, De Gregorio M, Di Mattia C, Serafini M, Mastrocola D (2016) Non enzymatic browning during cocoa roasting as affected by processing time and temperature. J Food Eng 169:44–52. https://doi.org/10.1016/j.jfoodeng.2015.08.018

    Article  CAS  Google Scholar 

  117. Saltini, R., Akkerman, R., & Frosch, S. (2013). Optimizing chocolate production through traceability: A review of the influence of farming practices on cocoa bean quality. Food Control 29(1):167-187. https://doi.org/10.1016/j.foodcont.2012.05.054

  118. Santander M, Rodríguez J, Vaillant F, Escobar S (2020) An overview of the physical and biochemical transformation of cocoa seeds to beans and to chocolate: Flavor formation. Crit Rev Food Sci Nutr 60(10):1593–1613. https://doi.org/10.1080/10408398.2019.1581726

    Article  Google Scholar 

  119. Scalone G, Cucu T, De Kimpe N, De Meulenaer B (2015) Influence of free amino acids, oligopeptides, and polypeptides on the formation of pyrazines in Maillard model systems. J Agric Food Chem 63(22):5364–5372. https://doi.org/10.1021/acs.jafc.5b01129

    Article  CAS  PubMed  Google Scholar 

  120. Sharma P, Gujral HS, Rosell CM (2011) Effects of roasting on barley β-glucan, thermal, textural and pasting properties. J Cereal Sci 53(1):25–30. https://doi.org/10.1016/j.jcs.2010.08.005

    Article  CAS  Google Scholar 

  121. Srivastava PP, Das H, Prasad S (1994) Effect of roasting process variables on hardness of Bengal gram, maize and soybean. J Food Sci Technol 31:62–65

    Google Scholar 

  122. Stanley T (2014) Effects of alkalization and roasting on polyphenolic content of cocoa beans and cocoa powder. (Master of Science Master Thesis), The Pennsylvania State University, Pennsylvania. (1)

  123. Stanley TH, Van Buiten CB, Baker SA, Elias RJ, Anantheswaran RC, Lambert JD (2018) Impact of roasting on the flavan-3-ol composition, sensory-related chemistry, and in vitro pancreatic lipase inhibitory activity of cocoa beans. Food Chem 255:414–420. https://doi.org/10.1016/j.foodchem.2018.02.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Stark T, Bareuther S, Hofmann T (2006) Molecular Definition of the Taste of Roasted Cocoa Nibs (Theobroma cacao) by Means of Quantitative Studies and Sensory Experiments. J Agric Food Chem 54(15):5530–5539. https://doi.org/10.1021/jf0608726

    Article  CAS  PubMed  Google Scholar 

  125. Sukha, D. A., Bharath, S. M., Ali, N. A., & Umaharan, P. (2014). An assessment of the quality attributes of the Imperial College Selections (ICS) cacao (Theobroma cacao L.) clones.

  126. Swisscontact (2017) Guía de buenas prácticas de cosecha, fermentación y secado para la producción de cacaos especiales. In F. S. p. l. C. T.-. SWISSCONTACT (Ed.), 1 (pp. 33). https://www.swisscontact.org/.

  127. Tas NG, Gokmen V (2016) Effect of alkalization on the Maillard reaction products formed in cocoa during roasting. Food Res Int 89:930–936. https://doi.org/10.1016/j.foodres.2015.12.021

    Article  CAS  Google Scholar 

  128. Tassi ALW, Bento JAC, Ferreira KC, Caliari M, Silva VSND, Pacheco MTB, Soare, MS (2019) Roasting soybeans in a microwave for manufacturing chocolate dragées. Ciência Rural 49

  129. Teh QTM, Tan GLY, Loo SM, Azhar FZ, Menon AS, Hii CL (2016) THE DRYING KINETICS AND POLYPHENOL DEGRADATION OF COCOA BEANS. J Food Process Eng 39(5):484–491. https://doi.org/10.1111/jfpe.12239

    Article  CAS  Google Scholar 

  130. Tofalo R, Perpetuini G, Schirone M, Suzzi G (2016) Biogenic Amines: Toxicology and Health Effect. In: Caballero B, Finglas PM, Toldrá F (eds) Encyclopedia of Food and Health. Academic Press, Oxford, pp 424–429

    Chapter  Google Scholar 

  131. Toker OS, Palabiyik I, Pirouzian HR, Aktar T, Konar N (2020) Chocolate aroma: Factors, importance and analysis. Trends Food Sci Technol 99:580–592. https://doi.org/10.1016/j.tifs.2020.03.035

    Article  CAS  Google Scholar 

  132. Torres-Moreno M, Torrescasana E, Salas-Salvadó J, Blanch C (2015) Nutritional composition and fatty acids profile in cocoa beans and chocolates with different geographical origin and processing conditions. Food Chem 166:125–132. https://doi.org/10.1016/j.foodchem.2014.05.141

    Article  CAS  PubMed  Google Scholar 

  133. Tran PD, Van de Walle D, De Clercq N, De Winne A, Kadow D, Lieberei R, Van Durme J (2015) Assessing cocoa aroma quality by multiple analytical approaches. Food Res Int 77:657–669. https://doi.org/10.1016/j.foodres.2015.09.019

    Article  CAS  Google Scholar 

  134. Trognitz B, Cros E, Assemat S, Davrieux F, Forestier-Chiron N, Ayestas E, Hermann M (2013) Diversity of cacao trees in Waslala, Nicaragua: associations between genotype spectra, product quality and yield potential. PLoS One 8(1):e54079–e54079. https://doi.org/10.1371/journal.pone.0054079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. USDA NNDFSR (2019) Chocolate, dark, 70–85% cacao solids. (NDB Number:19904). Retrieved 17/10/20120, from National Nutrient Database for Standard Reference

  136. Utrilla-Vázquez M, Rodríguez-Campos J, Avendaño-Arazate CH, Gschaedler A, Lugo-Cervantes E (2020) Analysis of volatile compounds of five varieties of Maya cocoa during fermentation and drying processes by Venn diagram and PCA. Food Res Int 129:108834. https://doi.org/10.1016/j.foodres.2019.108834

    Article  CAS  PubMed  Google Scholar 

  137. Voigt, J., Janek, K., Textoris-Taube, K., Niewienda, A., & Wostemeyer, J. (2016). Partial purification and characterisation of the peptide precursors of the cocoa-specific aroma components. Food Chemistry, 192, 706-713. https://doi.org/10.1016/j.foodchem.2015.07.068

  138. Warrell (2016) The Difference Between Good Chocolate And Bad Chocolate. Retrieved from Camp Hill, Pennsylvania, United States: https://www.warrellcorp.com/blog/difference-between-good-chocolate-and-bad-chocolate/

  139. Wollgast, J., & Anklam, E. (2000). Review on polyphenols in Theobroma cacao: changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Research International, 33(6), 423-447. http://dx.doi.org/10.1016/S0963-9969(00)00068-5

  140. Yahia EM, Carrillo-López A, Bello-Perez LA (2019) Chapter 9 - Carbohydrates. In: Yahia EM (ed) Postharvest Physiology and Biochemistry of Fruits and Vegetables. Woodhead Publishing, pp 175–205

    Google Scholar 

  141. Yates P (2009) 3 - Formulation of chocolate for industrial applications. In: Talbot G (ed) Science and Technology of Enrobed and Filled Chocolate, Confectionery and Bakery Products. Woodhead Publishing, pp 29–52

    Chapter  Google Scholar 

  142. Yoneda M, Sugimoto N, Katakura M, Matsuzaki K, Tanigami H, Yachie A, Shido O (2017) Theobromine up-regulates cerebral brain-derived neurotrophic factor and facilitates motor learning in mice. J Nutr Biochem 39:110–116. https://doi.org/10.1016/j.jnutbio.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  143. Yu A-N, Tan Z-W, Shi B-A (2012) Influence of the pH on the formation of pyrazine compounds by the Maillard reaction of L-ascorbic acid with acidic, basic and neutral amino acids. Asia-Pac J Chem Eng 7(3):455–462. https://doi.org/10.1002/apj.594

    Article  CAS  Google Scholar 

  144. Zamora R, Aguilar I, Hidalgo FJ (2017) Epoxyalkenal-trapping ability of phenolic compounds. Food Chem 237:444–452. https://doi.org/10.1016/j.foodchem.2017.05.129

    Article  CAS  PubMed  Google Scholar 

  145. Zamora R, Hidalgo FJ (2011) The Maillard reaction and lipid oxidation 23(3):59–62. https://doi.org/10.1002/lite.201100094

    Article  CAS  Google Scholar 

  146. Zapata S, Tamayo A, Rojano B (2015) Efecto del Tostado Sobre los Metabolitos Secundarios y la Actividad Antioxidante de Clones de Cacao Colombiano. J Revista Facultad Nacional de Agronomía Medellín 68:7497–7507

  147. Ziegleder G (2009) Flavour development in cocoa and chocolate Industrial Chocolate Manufacture and Use (Fourth ed., pp. 169–191): Wiley-Blackwell

  148. Żogała A (2014) Critical Analysis of Underground Coal Gasification Models. Part II: Kinetic and Computational Fluid Dynamics Models. Journal of Sustainable Mining 13:29–37

    Article  Google Scholar 

  149. Zyzelewicz D, Budryn G, Krysiak W, Oracz J, Nebesny E, Bojczuk M (2014) Influence of roasting conditions on fatty acid composition and oxidative changes of cocoa butter extracted from cocoa bean of Forastero variety cultivated in Togo. Food Res Int 63:328–343. https://doi.org/10.1016/j.foodres.2014.04.053

    Article  CAS  Google Scholar 

  150. Zyzelewicz D, Krysiak W, Nebesny E, Budryn G (2014) Application of various methods for determination of the color of cocoa beans roasted under variable process parameters. European Food Res Technol 238(4):549-563. https://doi.org/10.1007/s00217-013-2123-6

  151. Zzaman W, Bhat R, Yang TA, Easa AM (2017) Influences of superheated steam roasting on changes in sugar, amino acid and flavour active components of cocoa bean (Theobroma cacao). J Sci Food Agric 97(13):4429–4437. https://doi.org/10.1002/jsfa.8302

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the University of Groningen, and the Alliance for Biomass and Sustainability Research–ABISURE “Universidad Nacional de Colombia” Hermes code 53024 for the support and financing of this work. Farid Chejne wishes to thank project “Strategy of transformation of the Colombian energy sector in the horizon 2030” funded by call 788 of Minciencias Scientific Ecosystem. Myriam Rojas wishes to thank to “Fundación CeiBA” for the forgivable education grant for Doctorate in Engineering—Energy Systems and H. Vallejo for the illustrations.

Funding

The first author received funding from “Fundación CeiBA” under a forgivable education grant for Doctorate in Engineering and support from the University of Groningen and “Universidad Nacional de Colombia.” The research leading to these results received funding from the project “Strategy of transformation of the Colombian energy sector in the horizon 2030” funded by call 788 of Minciencias Scientific Ecosystem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Chejne.

Ethics declarations

Ethics Approval

Ethics approval was not required for this research.

Consent to Participate

Not applicable.

Consent for Publication

All permissions for this document are available.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas, M., Hommes, A., Heeres, H.J. et al. Physicochemical Phenomena in the Roasting of Cocoa (Theobroma cacao L.). Food Eng Rev 14, 509–533 (2022). https://doi.org/10.1007/s12393-021-09301-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-021-09301-z

Keywords

Navigation