Skip to main content
Log in

Assessment of Intramuscular Fat Quality in Pork Using Hyperspectral Imaging

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Intramuscular fat (IMF) quality in muscle contributes to important aspects of meat quality and is critical to the nutritional, sensory values, and shelf stability of meat. The measurement of IMF quality currently relies on gas chromatography (GC), which is labor-intensive and time-consuming. This study investigated the use of hyperspectral imaging to predict the quality of IMF in pork loin cuts. Pork loin cuts were scanned using hyperspectral imaging (900–1700 nm), followed by GC analysis of the fatty acid profile. Mean spectral features (MSF), Gabor filter features (GFF), and wild line detector feature (WLDF) techniques were used to extract texture features and then related with the GC results by partial least-squares regression (PLSR) algorithm. Simplified models were developed using PLSR from selected wavelengths, and the results of the validation provided by the WLD features showed coefficient of determination (R2) for C14:0, C16:0, C16:1, C18:0, C18:1, C18:2, SFA (saturated fatty acid), MUFA (monounsaturated fatty acids), and PUFA (polyunsaturated fatty acid) that ranged from 0.805 to 0.942 and root mean square error of prediction ranged from 0.087 to 0.304 mg/g meat. The result indicates that texture features from hyperspectral images could be used to develop a rapid tool for assessment of the IMF quality in the pork.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baer AA, Dilger AC (2014) Effect of fat quality on sausage processing, texture, and sensory characteristics. Meat Sci 96(3):1242–1249

    Article  CAS  Google Scholar 

  2. Ballabio D, Consonni V (2013) Classification tools in chemistry. Part 1: linear models. PLS-DA. Anal Methods 5(16):3790–3798

    Article  CAS  Google Scholar 

  3. Barbin DF, ElMasry G, Sun D-W, Allen P (2013) Non-destructive determination of chemical composition in intact and minced pork using near-infrared hyperspectral imaging. Food Chem 138(2):1162–1171

    Article  CAS  Google Scholar 

  4. Chen Y-N, Sun D-W, Cheng J-H, Gao W-H (2016) Recent advances for rapid identification of chemical information of muscle foods by hyperspectral imaging analysis. Food Eng Rev 8(3):336–350

    Article  CAS  Google Scholar 

  5. Cheng J-H, Sun D-W, Pu H-B, Wang Q-J, Chen Y-N (2015) Suitability of hyperspectral imaging for rapid evaluation of thiobarbituric acid (TBA) value in grass carp (Ctenopharyngodon idella) fillet. Food Chem 171:258–265

    Article  CAS  Google Scholar 

  6. Craigie CR, Johnson PL, Shorten PR, Charteris A, Maclennan G, Tate ML, Agnew MP, Taukiri KR, Stuart AD, Reis MM (2017) Application of Hyperspectral imaging to predict the pH, intramuscular fatty acid content and composition of lamb M. longissimus lumborum at 24h post mortem. Meat Sci 132:19–28

    Article  CAS  Google Scholar 

  7. ElMasry GM, Nakauchi S (2016) Biosyst Eng 142:53–82

    Article  Google Scholar 

  8. Fernández-Cabanás VM, Polvillo O, Rodríguez-Acuña R, Botella B, Horcada A (2011) Rapid determination of the fatty acid profile in pork dry-cured sausages by NIR spectroscopy. Food Chem 124(1):373–378

    Article  Google Scholar 

  9. Gjerlaug-Enger E, Kongsro J, Aass L, Ødegård J, Vangen O (2011) Prediction of fat quality in pig carcasses by near-infrared spectroscopy. Animal 5(11):1829–1841

    Article  CAS  Google Scholar 

  10. González-Martín I, González-Pérez C, Hernández-Méndez J, Alvarez-García N (2003) Determination of fatty acids in the subcutaneous fat of Iberian breed swine by near infrared spectroscopy (NIRS) with a fibre-optic probe. Meat Sci 65(2):713–719

    Article  Google Scholar 

  11. González-Martín I, González-Pérez C, Alvarez-García N, González-Cabrera JM (2005) On-line determination of fatty acid composition in intramuscular fat of Iberian pork loin by NIRs with a remote reflectance fibre optic probe. Meat Sci 69(2):243–248

    Article  Google Scholar 

  12. Guo T, Huang M, Zhu Q, Guo Y, Qin J (2018) Hyperspectral image-based multi-feature integration for TVB-N measurement in pork. J Food Eng 218:61–68

    Article  CAS  Google Scholar 

  13. Hourant P, Baeten V, Morales MT, Meurens M, Aparicio R (2000) Oil and Fat Classification by Selected Bands of Near-Infrared Spectroscopy. Applied Spectroscopy 54(8):1168–1174

  14. Huang H, Liu L, Ngadi MO, Gariépy C (2014) Rapid and non-invasive quantification of intramuscular fat content of intact pork cuts. Talanta. 119:385–395

    Article  CAS  Google Scholar 

  15. Huang H, Liu L, Ngadi MO (2017) Assessment of intramuscular fat content of pork using NIR hyperspectral images of rib end. J Food Eng 193:29–41

    Article  Google Scholar 

  16. Kamruzzaman M, Barbin D, ElMasry G, Sun D-W, Allen P (2012) Potential of hyperspectral imaging and pattern recognition for categorization and authentication of red meat. Innovative Food Sci Emerg Technol 16:316–325

    Article  CAS  Google Scholar 

  17. Kennard RW, Stone LA (1969) Computer aided design of experiments. Technometrics. 11(1):137–148. https://doi.org/10.1080/00401706.1969.10490666

    Article  Google Scholar 

  18. Kobayashi K-I, Matsui Y, Maebuchi Y, Toyota T, Nakauchi S (2010) Near infrared spectroscopy and hyperspectral imaging for prediction and visualisation of fat and fatty acid content in intact raw beef cuts. J Near Infrared Spectrosc 18(5):301–315

    Article  CAS  Google Scholar 

  19. Kucha CT, Liu L, Ngadi MO (2018) Non-destructive spectroscopic techniques and multivariate analysis for assessment of fat quality in pork and pork products: a review. Sensors. 18(2):377

    Article  Google Scholar 

  20. Liu L, Ngadi MO (2013) Detecting fertility and early embryo development of chicken eggs using near-infrared hyperspectral imaging. Food Bioprocess Technol 6(9):2503–2513

    Article  Google Scholar 

  21. Liu L, Ngadi MO (2014) Predicting intramuscular fat content of pork using hyperspectral imaging. J Food Eng 134:16–23

    Article  Google Scholar 

  22. Liu L, Ngadi MO, Prasher SO, Gariépy C (2010) Categorization of pork quality using Gabor filter-based hyperspectral imaging technology. J Food Eng 99(3):284–293

    Article  Google Scholar 

  23. Liu L, Ngadi MO, Prasher SO, Gariépy C (2012) Objective determination of pork marbling scores using the wide line detector. J Food Eng 110(3):497–504

    Article  Google Scholar 

  24. Manjunath BS, Ma WY (1996) Texture features for browsing and retrieval of image data. IEEE Trans Pattern Anal Mach Intell 18(8):837–842

    Article  Google Scholar 

  25. Martens H, Høy M, Wise BM, Bro R, Brockhoff PB (2003) Pre-whitening of data by covariance-weighted pre-processing. J Chemom 17(3):153–165

    Article  CAS  Google Scholar 

  26. Matthews KR (2011) 10 - Saturated fat reduction in butchered meat. In: Talbot G (ed) Reducing Saturated Fats in Foods. Woodhead Publishing, pp 195–209

  27. Mba OI, Dumont M-J, Ngadi M (2017) Thermostability and degradation kinetics of tocochromanols and carotenoids in palm oil, canola oil and their blends during deep-fat frying. LWT Food Sci Technol 82:131–138

    Article  CAS  Google Scholar 

  28. Osborne BG, Fearn T (1986) Near infrared spectroscopy in food analysis. Longman Scientific & Technical. Wiley, Harlow

    Google Scholar 

  29. Pérez-Juan M, Afseth NK, González J, Díaz I, Gispert M, Furnols MFI, Oliver MA, Realini CE (2010) Prediction of fatty acid composition using a NIRS fibre optics probe at two different locations of ham subcutaneous fat. Food Res Int 43(5):1416–1422

    Article  Google Scholar 

  30. Pérez-Marín D, De Pedro SE, Guerrero-Ginel JE, Garrido-Varo A (2009) A feasibility study on the use of near-infrared spectroscopy for prediction of the fatty acid profile in live Iberian pigs and carcasses. Meat Sci 83(4):627–633

    Article  Google Scholar 

  31. Prieto N, Uttaro B, Mapiye C, Turner TD, Dugan MER, Zamora V, Young M, Beltranena E (2014) Predicting fat quality from pigs fed reduced-oil corn dried distillers grains with solubles by near infrared reflectance spectroscopy: fatty acid composition and iodine value. Meat Sci 98(4):585–590

    Article  CAS  Google Scholar 

  32. Rinnan Å, Berg FVD, Engelsen SB (2009) Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal Chem 28(10):1201–1222

    Article  CAS  Google Scholar 

  33. Rinnan Å, Andersson M, Ridder C, Engelsen SB (2014) Recursive weighted partial least squares (rPLS): an efficient variable selection method using. PLS. 28(5):439–447

    CAS  Google Scholar 

  34. Rosenvold K, Andersen HJ (2003) Factors of significance for pork quality—a review. Meat Sci 64(3):219–237

    Article  Google Scholar 

  35. Rosenvold K, Micklander E, Hansen PW, Burling-Claridge R, Challies M, Devine C, North M (2009) Temporal, biochemical and structural factors that influence beef quality measurement using near infrared spectroscopy. Meat Sci 82(3):379–388

    Article  CAS  Google Scholar 

  36. Silva CS, Pimentel MF, Amigo JM, García-Ruiz C, Ortega-Ojeda F (2018) Chemometric approaches for document dating: handling paper variability. Anal Chim Acta 1031:28–37

    Article  CAS  Google Scholar 

  37. Webb EC, O’Neill HA (2008) The animal fat paradox and meat quality. Meat Sci 80(1):28–36

    Article  CAS  Google Scholar 

  38. Wood JD, Richardson RI, Nute GR, Fisher AV, Campo MM, Kasapidou E, Sheard PR, Enser M (2004) Effects of fatty acids on meat quality: a review. Meat Sci 66(1):21–32

    Article  CAS  Google Scholar 

  39. Wood JD, Enser M, Fisher AV, Nute GR, Sheard PR, Richardson RI, Hughes SI, Whittington FM (2008) Fat deposition, fatty acid composition and meat quality: a review. Meat Sci 78(4):343–358

    Article  CAS  Google Scholar 

  40. Xiong Z, Sun D-W, Pu H, Xie A, Han Z, Luo M (2015) Non-destructive prediction of thiobarbituricacid reactive substances (TBARS) value for freshness evaluation of chicken meat using hyperspectral imaging. Food Chem 179:175–181

    Article  CAS  Google Scholar 

  41. Zamora-Rojas E, Garrido-Varo A, De Pedro-Sanz E, Guerrero-Ginel JE, Pérez-Marín D (2013) Prediction of fatty acids content in pig adipose tissue by near infrared spectroscopy: at-line versus in-situ analysis. Meat Sci 95(3):503–511

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ngadi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucha, C.T., Liu, L., Ngadi, M. et al. Assessment of Intramuscular Fat Quality in Pork Using Hyperspectral Imaging. Food Eng Rev 13, 274–289 (2021). https://doi.org/10.1007/s12393-020-09246-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-020-09246-9

Keywords

Navigation