Skip to main content
Log in

The Application of Image Acquisition and Analysis Techniques to the Field of Drying

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Many changes occur in the structure and properties of a test material during drying as a consequence of moisture evaporation. The use of image acquisition and analysis techniques is proposed here as a potential method of obtaining a better understanding of the different phenomena that can happen during drying. Such techniques can quantify the morphological, textural, and color features of materials and the changes that occur in them. The techniques are convenient to use, accurate, and facilitate rapid measurement. Accordingly, the use of image acquisition and analysis techniques continues to attract considerable research interest in the field of drying. Many such techniques have been applied in this field: scanning electron microscopy (SEM), charge-coupled device (CCD) photography, neutron radiography (NR), magnetic resonance imaging (MRI), X-ray tomography, and so forth. Each technique has its own characteristics and specific applications. SEM is employed to investigate the morphological structure and pore distribution of a sample during drying in the form of magnified 2D images. A computer vision system typically uses two portable CCD cameras to provide 2D top- and side-view images of the sample. These can be used for online monitoring of the change in shape and color and any crack development in the sample during drying. NR and MRI are used for determination of the moisture profiles inside the sample during drying. In addition, MRI can be used to characterize the pore distribution in combination with other technologies. X-ray tomography provides 2D cross sections and 3D tomographic reconstructions of the sample, which can be used to elucidate the volume, crack development, surface area, porosity, and moisture profiles of the sample during drying. Overall, of all these various image acquisition and analysis techniques, X-ray tomography is considered to be the one that has the most promising future in the field of drying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Aguilera JM, Stanley DW (1999) Microstructural principles of food processing and engineering. Springer, New York

    Google Scholar 

  2. Almudaiheem JA, Hansen W (1987) Effect of specimen size and shape on drying shrinkage of concrete. ACI Mater J 84(2):130–135

    Google Scholar 

  3. Anderson IS, Mcgreevy RL, Bilheux HZ (2009) Neutron imaging and applications. Springer, New York

    Google Scholar 

  4. Bakhshi M, Mobasher B (2011) Experimental observations of early-age drying of portland cement paste under low-pressure conditions. Cem Concr Compos 33(4):474–484

    Article  CAS  Google Scholar 

  5. Bennett G, Gorce J-P, Keddie J, Mcdonald P, Berglind H (2003) Magnetic resonance profiling studies of the drying of film-forming aqueous dispersions and glue layers. Magn Reson Imaging 21(3):235–241

    Article  CAS  Google Scholar 

  6. Betz O, Wegst U, Weide D, Heethoff M, Helfen L, Lee WK, Cloetens P (2007) Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure. J Microsc 227(1):51–71

    Article  Google Scholar 

  7. Beyea S, Balcom B, Bremner T, Prado P, Green D, Armstrong R, Grattan-Bellew P (1998) Magnetic resonance imaging and moisture content profiles of drying concrete. Cem Concr Res 28(3):453–463

    Article  CAS  Google Scholar 

  8. Blacher S, Maquet V, Pirard R, Pirard J-P, Jérôme R (2001) Image analysis, impedance spectroscopy and mercury porosimetry characterisation of freeze-drying porous materials. Colloids Surf A 187:375–383

    Article  Google Scholar 

  9. Bonazzi C, Dumoulin E (2011) Quality changes in food materials as influenced by drying processes. In: Tsotsas E, Mujumdar AS (eds) Modern drying technology. Wiley, Weinheim

    Google Scholar 

  10. Braet F, De Zanger R, Wisse E (1997) Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells. J Microsc 186(1):84–87

    Article  CAS  Google Scholar 

  11. Campos-Mendiola R, Hernández-Sánchez H, Chanona-Pérez J, Alamilla-Beltrán L, Jiménez-Aparicio A, Fito P, Gutiérrez-López G (2007) Non-isotropic shrinkage and interfaces during convective drying of potato slabs within the frame of the systematic approach to food engineering systems (safes) methodology. J Food Eng 83(2):285–292

    Article  CAS  Google Scholar 

  12. Chen Y, Martynenko A (2013) Computer vision for real-time measurements of shrinkage and color changes in blueberry convective drying. Dry Technol 31(10):1114–1123

    Article  CAS  Google Scholar 

  13. Chiewchan N, Praphraiphetch C, Devahastin S (2010) Effect of pretreatment on surface topographical features of vegetables during drying. J Food Eng 101(1):41–48

    Article  Google Scholar 

  14. Davidson VJ, Li X, Brown RB (2004) Forced-air drying of ginseng roots: 2. Control strategy for three-stage drying process. J Food Eng 63(4):369–373

    Article  Google Scholar 

  15. De Sa C, Benboudjema F, Thiery M, Sicard J (2008) Analysis of microcracking induced by differential drying shrinkage. Cem Concr Compos 30(10):947–956

    Article  CAS  Google Scholar 

  16. Desbois G, Urai J, Kukla P (2009) Morphology of the pore space in claystones—evidence from BIB/FIB ion beam sectioning and cryo-SEM observations. Earth Discuss 4:1–19

    Article  Google Scholar 

  17. Desbois G, Urai JL, Hemes S, Brassinnes S, De Craen M, Sillen X (2014) Nanometer-scale pore fluid distribution and drying damage in preserved clay cores from Belgian clay formations inferred by BIB-cryo-SEM. Eng Geol 179:117–131

    Article  Google Scholar 

  18. Domanus J (1992) Practical neutron radiography. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  19. Duval F, Quellec S, Trémier A, Druilhe C, Mariette F (2010) Non-destructive quantification of water gradient in sludge composting with magnetic resonance imaging. Waste Manag 30(4):610–619

    Article  CAS  Google Scholar 

  20. Dyck V (1998) Desktop X-ray microscopy and microtomography. J Microsc 191(2):151–158

    Article  Google Scholar 

  21. Escalona I, Jomaa W, Olivera-Fuentes C, Crine M, Léonard A (2010) Convective drying of gels: comparison between simulated and experimental moisture profiles obtained by X-ray microtomography. Dry Technol 28(5):644–650

    Article  Google Scholar 

  22. Evans SD, Brambilla A, Lane DM, Torreggiani D, Hall LD (2002) Magnetic resonance imaging of strawberry (fragaria vesca) slices during osmotic dehydration and air drying. LWT Food Sci Technol 35(2):177–184

    Article  CAS  Google Scholar 

  23. Faccia P, Pardini O, Amalvy J, Cap N, Grumel E, Arizaga R, Trivi M (2009) Differentiation of the drying time of paints by dynamic speckle interferometry. Prog Org Coat 64(4):350–355

    Article  CAS  Google Scholar 

  24. Falcone P, Baiano A, Zanini F, Mancini L, Tromba G, Montanari F, Nobile M (2004) A novel approach to the study of bread porous structure: phase-contrast X-ray microtomography. J Food Sci 69(1):FEP38–FEP43

    Article  Google Scholar 

  25. Fernandez L, Castillero C, Aguilera J (2005) An application of image analysis to dehydration of apple discs. J Food Eng 67(1):185–193

    Article  Google Scholar 

  26. Fijał-Kirejczyk IM, Milczarek JJ, Banaszak J, Trzciński A, Żołądek J (2009) Dynamic neutron radiography studies of drying of kaolin clay cylinders. Nukleonika 54:123–128

    Google Scholar 

  27. Fijał-Kirejczyk IM, Milczarek JJ, De Beer FC, Radebe MJ, Nothnagel G, Żołądek-Nowak J (2012) Thermal neutron radiography studies of drying of rectangular blocks of wet mortar. Nukleonika 57:529–535

    Google Scholar 

  28. Fijał-Kirejczyk IM, Milczarek JJ, Radebe MJ, De Beer FC, Nothnagel G, Żołądek-Nowak J (2013) Neutron radiography applications in studies of drying of capillary-porous systems. Dry Technol 31(8):872–880

    Article  CAS  Google Scholar 

  29. Fijał-Kirejczyk IM, Milczarek JJ, Żołądek-Nowak J (2011) Neutron radiography observations of inner wet region in drying of quartz sand cylinder. Nucl Instrum Methods Phys Res A 651(1):205–210

    Article  CAS  Google Scholar 

  30. Fijał-Kirejczyk IM, Milczarek JJ, Zoladek-Nowak J, De Beer FC, Radebeb MJ, Nothnagelb G (2012) Application of statistical image analysis in quantification of neutron radiography images of drying. Acta Phys Pol A 122(2):410–414

    Article  Google Scholar 

  31. Fito P, Ortolá M, De Los Reyes R, Fito P, De Los Reyes E (2004) Control of citrus surface drying by image analysis of infrared thermography. J Food Eng 61(3):287–290

    Article  Google Scholar 

  32. Frühwald E, Li Y, Wadsö L (2008) Image analysis study of mould susceptibility of spruce and larch wood dried or heat-treated at different temperatures. Wood Mater Sci Eng 3(1–2):55–61

    Article  Google Scholar 

  33. Frıas J, Foucat L, Bimbenet JJ, Bonazzi C (2002) Modeling of moisture profiles in paddy rice during drying mapped with magnetic resonance imaging. Chem Eng J 86(1):173–178

    Article  Google Scholar 

  34. Garekani HA, Moghaddam ZF, Sadeghi F (2013) Organic solution versus aqueous dispersion of eudragit rs in preparation of sustained release microparticles of theophylline using spray drying. Colloids Surf B Biointerfaces 108:374–379

    Article  CAS  Google Scholar 

  35. Ghosh PK, Jayas DS, Gruwel ML, White ND (2007) A magnetic resonance imaging study of wheat drying kinetics. Biosyst Eng 97(2):189–199

    Article  Google Scholar 

  36. Ghosh PK, Jayas DS, Smith E, Gruwel M, White N, Zhilkin P (2008) Mathematical modelling of wheat kernel drying with input from moisture movement studies using magnetic resonance imaging (MRI), part I: model development and comparison with MRI observations. Biosyst Eng 100(3):389–400

    Article  Google Scholar 

  37. Godward J, Gunning P, Hills B (1999) An NMR protocol for determining ice crystal size distributions during freezing and pore size distributions during freeze-drying. Appl Magn Reson 17(4):537–556

    Article  CAS  Google Scholar 

  38. Harding SG, Wessman D, Stenström S, Kenne L (2001) Water transport during the drying of cardboard studied by nmr imaging and diffusion techniques. Chem Eng Sci 56(18):5269–5281

    Article  CAS  Google Scholar 

  39. Hassmoro N, Abdullah S, Rusop M (2013) Atomic force microscopy characterization of latex nanoparticles synthesized by slow drying process of nano-emulsion polymerization. Procedia Eng 56:755–759

    Article  CAS  Google Scholar 

  40. Hawaree N, Chiewchan N, Devahastin S (2009) Effects of drying temperature and surface characteristics of vegetable on the survival of salmonella. J Food Sci 74(1):E16–E22

    Article  CAS  Google Scholar 

  41. Hills B (1999) NMR studies of water mobility in foods. In: Roos YH, Leslie RB, Lillford PJ (eds) Water management in the design and distribution of quality foods. Technomic Publishing Company Inc, Lancaster

    Google Scholar 

  42. Hills B, Babonneau F (1994) Quantitative radial imaging of porous particles beds with varying water contents. Magn Reson Imaging 12(7):1065–1074

    Article  CAS  Google Scholar 

  43. Hills B, Godward J, Manning C, Biechlin J, Wright K (1998) Microstructural characterization of starch systems by nmr relaxation and Q-space microscopy. Magn Reson Imaging 16(5):557–564

    Article  CAS  Google Scholar 

  44. Hills BP, Godward J, Wright KM (1997) Fast radial NMR microimaging studies of pasta drying. J Food Eng 33(3):321–335

    Article  Google Scholar 

  45. Hills BP, Nott KP (1999) NMR studies of water compartmentation in carrot parenchyma tissue during drying and freezing. Appl Magn Reson 17(4):521–535

    Article  CAS  Google Scholar 

  46. Hills B, Quantin V (1993) Water proton relaxation in dilute and unsaturated suspensions of non-porous particles. Mol Phys 79(1):77–93

    Article  CAS  Google Scholar 

  47. Hills B, Wright K, Wright J, Carpenter T, Hall L (1994) An MRI study of drying in granular beds of nonporous particles. Magn Reson Imaging 12(7):1053–1063

    Article  CAS  Google Scholar 

  48. Hills BP, Remigereau B (1997) NMR studies of changes in subcellular water compartmentation in parenchyma apple tissue during drying and freezing. Int J Food Sci Technol 32(1):51–61

    Article  CAS  Google Scholar 

  49. Hosseinpour S, Rafiee S, Mohtasebi SS (2011) Application of image processing to analyze shrinkage and shape changes of shrimp batch during drying. Dry Technol 29(12):1416–1438

    Article  Google Scholar 

  50. Hsu J-P, Tao T, Su A, Mujumdar AS, Lee D-J (2010) Model for sludge cake drying accounting for developing cracks. Dry Technol 28(7):922–926

    Article  Google Scholar 

  51. Huang WL, Cui SH, Liang KM, Gu SR, Yuan ZF (2002) Influence of drying procedure on the mesoporosity and surface fractal dimensions of silica xerogels prepared with different agitation methods. J Colloid Interface Sci 246(1):129–134

    Article  CAS  Google Scholar 

  52. Huang X, Qi T, Wang Z, Yang D, Liu X (2012) A moisture transmembrane transfer model for pore network simulation of plant materials drying. Dry Technol 30(15):1742–1749

    Article  Google Scholar 

  53. Hughes P, Mcdonald P, Rhodes N, Rockliffe J, Smith E, Wills J (1996) A stray field magnetic resonance imaging study of the drying of sodium silicate films. J Colloid Interface Sci 177(1):208–213

    Article  CAS  Google Scholar 

  54. Islam MI-U, Edrisi M, Langrish T (2013) Improving process yield by adding WPI to lactose during crystallization and spray drying under high-humidity conditions. Dry Technol 31(4):393–404

    Article  CAS  Google Scholar 

  55. Kerdpiboon S, Devahastin S (2007) Fractal characterization of some physical properties of a food product under various drying conditions. Dry Technol 25(1):135–146

    Article  Google Scholar 

  56. Kerdpiboon S, Devahastin S, Kerr WL (2007) Comparative fractal characterization of physical changes of different food products during drying. J Food Eng 83(4):570–580

    Article  Google Scholar 

  57. Kingsly A, Meena H, Jain R, Singh D (2007) Shrinkage of ber (Zizyphus mauritian L.) fruits during sun drying. J Food Eng 79(1):6–10

    Article  Google Scholar 

  58. Kitsunezaki S (2011) Crack growth in drying paste. Adv Powder Technol 22(3):311–318

    Article  Google Scholar 

  59. Koptyug IV, Fenelonov VB, Khitrina LY, Sagdeev RZ, Parmon VN (1998) In situ NMR imaging studies of the drying kinetics of porous catalyst support pellets. J Phys Chem B 102(17):3090–3098

    Article  CAS  Google Scholar 

  60. Krokida M, Maroulis Z (2000) Quality changes during drying of food materials. In: Mujumdar AS (ed) Drying technology in agriculture and food sciences. Science Publishers, Enfield

    Google Scholar 

  61. Krokida M, Tsami E, Maroulis Z (1998) Kinetics on color changes during drying of some fruits and vegetables. Dry Technol 16(3–5):667–685

    Article  CAS  Google Scholar 

  62. Léonard A, Blacher S, Marchot P, Crine M (2002) Use of X-ray microtomography to follow the convective heat drying of wastewater sludges. Dry Technol 20(4–5):1053–1069

    Article  Google Scholar 

  63. Léonard A, Blacher S, Marchot P, Pirard J-P, Crine M (2005) Convective drying of wastewater sludges: influence of air temperature, superficial velocity, and humidity on the kinetics. Dry Technol 23(8):1667–1679

    Article  CAS  Google Scholar 

  64. Léonard A, Blacher S, Marchot P, Pirard J-P, Crine M (2003) Image analysis of X-ray microtomograms of soft materials during convective drying. J Microsc 212(2):197–204

    Article  Google Scholar 

  65. Léonard A, Blacher S, Marchot P, Pirard J-P, Crine M (2004) Measurement of shrinkage and cracks associated to convective drying of soft materials by X-ray microtomography. Dry Technol 22(7):1695–1708

    Article  Google Scholar 

  66. Léonard A, Blacher S, Marchot P, Pirard JP, Crine M (2005) Image analysis of X-ray microtomograms of soft materials during convective drying: 3D measurements. J Microsc 218(3):247–252

    Article  Google Scholar 

  67. Léonard A, Blacher S, Marchot P, Pirard JP, Crine M (2005) Moisture profiles determination during convective drying using X-ray microtomography. Can J Chem Eng 83(1):127–131

    Article  Google Scholar 

  68. Léonard A, Blacher S, Pirard R, Marchot P, Pirard J-P, Crine M (2003) Multiscale texture characterization of wastewater sludges dried in a convective rig. Dry Technol 21(8):1507–1526

    Article  CAS  Google Scholar 

  69. Léonard A, Crine M, Stepanek F (2008) Use of X-ray tomography for drying-related applications. In: Tsotsas E, Mujumdar AS (eds) Modern drying technology. Wiley, Weinheim

    Google Scholar 

  70. Léonard A, Meneses E, Le Trong E, Salmon T, Marchot P, Toye D, Crine M (2008) Influence of back mixing on the convective drying of residual sludges in a fixed bed. Water Res 42(10):2671–2677

    Article  CAS  Google Scholar 

  71. Léonard A, Vandevenne P, Salmon T, Marchot P, Crine M (2004) Wastewater sludge convective drying: influence of sludge origin. Environ Technol 25(9):1051–1057

    Article  Google Scholar 

  72. Lagier F, Jourdain X, De Sa C, Benboudjema F, Colliat J-B (2011) Numerical strategies for prediction of drying cracks in heterogeneous materials: comparison upon experimental results. Eng Struct 33(3):920–931

    Article  Google Scholar 

  73. Lai W, Kou S, Poon C (2012) Unsaturated zone characterization in soil through transient wetting and drying using GPR joint time–frequency analysis and grayscale images. J Hydrol 452:1–13

    Article  Google Scholar 

  74. Lazarescu C, Watanabe K, Avramidis S (2010) Density and moisture profile evolution during timber drying by ct scanning measurements. Dry Technol 28(4):460–467

    Article  CAS  Google Scholar 

  75. Leisen J, Hojjatie B, Coffin DW, Beckham HW (2001) In-plane moisture transport in paper detected by magnetic resonance imaging. Dry Technol 19(1):199–206

    Article  CAS  Google Scholar 

  76. Lekhal A, Girard K, Brown M, Kiang S, Khinast J, Glasser B (2004) The effect of agitated drying on the morphology of l-threonine (needle-like) crystals. Int J Pharm 270(1):263–277

    Article  CAS  Google Scholar 

  77. Lenoir N, Bornert M, Desrues J, Bésuelle P, Viggiani G (2007) Volumetric digital image correlation applied to X-ray microtomography images from triaxial compression tests on argillaceous rock. Strain 43(3):193–205

    Article  Google Scholar 

  78. Lewicki PP, Pawlak G (2005) Effect of mode of drying on microstructure of potato. Dry Technol 23(4):847–869

    Article  CAS  Google Scholar 

  79. Li J, Bennamoun L, Fraikin L, Salmon T, Toye D, Schreinemachers R, Léonard A (2014) Analysis of the shrinkage effect on mass transfer during convective drying of sawdust/sludge mixtures. Dry Technol 32(14):1706–1717

    Article  CAS  Google Scholar 

  80. Li J, Fraikin L, Salmon T, Bennamoun L, Toye D, Schreinemachers R, Léonard A (2015) Investigation on convective drying of mixtures of sewage sludge and sawdust in a fixed bed. Dry Technol 33(6):704–712

    Article  CAS  Google Scholar 

  81. Li J, Plougonven E, Fraikin L, Salmon T, Toye D, Léonard A (2015) Image analysis of X-ray tomograms of sludge during convective drying in a pilot-scale fixed bed. Chem Eng Sci 134:222–229

    Article  CAS  Google Scholar 

  82. Li J, Plougonven E, Fraikin L, Salmon T, Toye D, Nistajakis E, Léonard A (2015) Multiscale structure characterization of sawdust-waste water sludge extrudates dried in a pilot-scale fixed bed. Biomass Bioenergy 81:98–107

    Article  CAS  Google Scholar 

  83. Li X, Nail SL (2006) Nuclear magnetic resonance imaging of freeze-drying. J Pharm Sci 95(11):2516–2525

    Article  CAS  Google Scholar 

  84. Lim K, Barigou M (2004) X-ray micro-computed tomography of cellular food products. Food Res Int 37(10):1001–1012

    Article  Google Scholar 

  85. Lin SXQ, Chen XD (2009) Engineering data of diameter change during air drying of milk droplets with 40 wt% initial solids content. Dry Technol 27(10):1028–1032

    Article  CAS  Google Scholar 

  86. Louka N, Juhel F, Fazilleau V, Loonis P (2004) A novel colorimetry analysis used to compare different drying fish processes. Food Control 15(5):327–334

    Article  CAS  Google Scholar 

  87. Lozano J, Rotstein E, Urbicain M (1980) Total porosity and open-pore porosity in the drying of fruits. J Food Sci 45(5):1403–1407

    Article  Google Scholar 

  88. Lubelli B, De Winter D, Post J, Van Hees R, Drury M (2013) Cryo-FIB–SEM and MIP study of porosity and pore size distribution of bentonite and kaolin at different moisture contents. Appl Clay Sci 80:358–365

    Article  CAS  Google Scholar 

  89. Madiouli J, Sghaier J, Lecomte D, Sammouda H (2012) Determination of porosity change from shrinkage curves during drying of food material. Food Bioprod Process 90(1):43–51

    Article  Google Scholar 

  90. Manz B, Chow P, Gladden L (1999) Echo-planar imaging of porous media with spatial resolution below 100 μm. J Magn Reson 136(2):226–230

    Article  CAS  Google Scholar 

  91. Marchot P, Toye D, Pelsser AM, Crine M, L’homme G, Olujic Z (2001) Liquid distribution images on structured packing by X-ray computed tomography. AiChE J 47(6):1471–1476

    Article  CAS  Google Scholar 

  92. Marousis S, Saravacos G (1990) Density and porosity in drying starch materials. J Food Sci 55(5):1367–1372

    Article  Google Scholar 

  93. Martins R, Machado M, Pereira S, Nosari A, Tacon L, Freitas L (2012) Engineering active pharmaceutical ingredients by spray drying: effects on physical properties and in vitro dissolution. Dry Technol 30(9):905–913

    Article  CAS  Google Scholar 

  94. Martynenko A (2005) Computer-vision control system for ginseng drying. Ph.D. thesis, University of Guelph, Canada

  95. Martynenko A (2006) Computer-vision system for control of drying processes. Dry Technol 24(7):879–888

    Article  Google Scholar 

  96. Maskan A, Kaya S, Maskan M (2002) Effect of concentration and drying processes on color change of grape juice and leather (pestil). J Food Eng 54(1):75–80

    Article  Google Scholar 

  97. Mathews JP, Pone JDN, Mitchell GD, Halleck P (2011) High-resolution X-ray computed tomography observations of the thermal drying of lump-sized subbituminous coal. Fuel Process Technol 92(1):58–64

    Article  CAS  Google Scholar 

  98. Mauroux T, Benboudjema F, Turcry P, Aït-Mokhtar A, Deves O (2012) Study of cracking due to drying in coating mortars by digital image correlation. Cem Concr Res 42(7):1014–1023

    Article  CAS  Google Scholar 

  99. Mavilio A, Fernández M, Trivi M, Rabal H, Arizaga R (2010) Characterization of a paint drying process through granulometric analysis of speckle dynamic patterns. Signal Process 90(5):1623–1630

    Article  Google Scholar 

  100. Mayor L, Moreira R, Sereno A (2011) Shrinkage, density, porosity and shape changes during dehydration of pumpkin (Cucurbita pepo L.) fruits. J Food Eng 103(1):29–37

    Article  Google Scholar 

  101. Mayor L, Sereno A (2004) Modelling shrinkage during convective drying of food materials: a review. J Food Eng 61(3):373–386

    Article  Google Scholar 

  102. Mccarthy MJ, Lasseux D, Maneval JE (1994) NMR imaging in the study of diffusion of water in foods. J Food Eng 22(1):211–224

    Article  Google Scholar 

  103. Montminy MD, Tannenbaum AR, Macosko CW (2004) The 3D structure of real polymer foams. J Colloid Interface Sci 280(1):202–211

    Article  CAS  Google Scholar 

  104. Montminy MD, Tannenbaum AR, Macosko CW (2001) New algorithms for 3-D imaging and analysis of open-celled foams. J Cell Plast 37(6):501–515

    Article  CAS  Google Scholar 

  105. Mujumdar AS (2014) Handbook of industrial drying. CRC Press, New York

    Google Scholar 

  106. Mulet A, Garcia-Reverter J, Bon J, Berna A (2000) Effect of shape on potato and cauliflower shrinkage during drying. Dry Technol 18(6):1201–1219

    Article  Google Scholar 

  107. Nahimana H, Zhang M (2011) Shrinkage and color change during microwave vacuum drying of carrot. Dry Technol 29(7):836–847

    Article  CAS  Google Scholar 

  108. Niamnuy C, Devahastin S, Soponronnarit S (2014) Some recent advances in microstructural modification and monitoring of foods during drying: a review. J Food Eng 123:148–156

    Article  Google Scholar 

  109. Nowacka M, Wiktor A, Śledź M, Jurek N, Witrowa-Rajchert D (2012) Drying of ultrasound pretreated apple and its selected physical properties. J Food Eng 113(3):427–433

    Article  Google Scholar 

  110. Oikonomopoulou VP, Krokida MK, Karathanos VT (2011) The influence of freeze drying conditions on microstructural changes of food products. Procedia Food Sci 1:647–654

    Article  Google Scholar 

  111. Oliveira B, Santana M, Ré M (2006) Spray-dried chitosan microspheres as a pDNA carrier. Dry Technol 24(3):373–382

    Article  CAS  Google Scholar 

  112. Ortiz-García-Carrasco B, Yañez-Mota E, Pacheco-Aguirre F, Ruiz-Espinosa H, García-Alvarado M, Cortés-Zavaleta O, Ruiz-López I (2015) Drying of shrinkable food products: appraisal of deformation behavior and moisture diffusivity estimation under isotropic shrinkage. J Food Eng 144:138–147

    Article  Google Scholar 

  113. Oztop MH, Bansal H, Takhar P, Mccarthy KL, Mccarthy MJ (2014) Using multi-slice-multi-echo images with NMR relaxometry to assess water and fat distribution in coated chicken nuggets. LWT Food Sci Technol 55(2):690–694

    Article  CAS  Google Scholar 

  114. Pacheco-Aguirre F, Ladrón-González A, Ruiz-Espinosa H, García-Alvarado M, Ruiz-López I (2014) A method to estimate anisotropic diffusion coefficients for cylindrical solids: application to the drying of carrot. J Food Eng 125:24–33

    Article  Google Scholar 

  115. Pires L, Cooper M, Cássaro F, Reichardt K, Bacchi O, Dias N (2008) Micromorphological analysis to characterize structure modifications of soil samples submitted to wetting and drying cycles. Catena 72(2):297–304

    Article  Google Scholar 

  116. Postnov A, Sasov A (2002) 3D in-vivo X-ray microtomography of living snails. J Microsc 205(2):201–204

    Article  CAS  Google Scholar 

  117. Prakash SS, Francis LF, Scriven L (2006) Microstructure evolution in dry cast cellulose acetate membranes by cryo-SEM. J Membr Sci 283(1):328–338

    Article  CAS  Google Scholar 

  118. Quintanilla-Carvajal MX, Hernández-Sánchez H, Alamilla-Beltrán L, Zepeda-Vallejo G, Jaramillo-Flores ME, De Jesús Perea-Flores M, Jimenez-Aparicio A, Gutiérrez-López GF (2014) Effects of microfluidisation process on the amounts and distribution of encapsulated and non-encapsulated α-tocopherol microcapsules obtained by spray drying. Food Res Int 63:2–8

    Article  CAS  Google Scholar 

  119. Ramos IN, Silva CL, Sereno AM, Aguilera JM (2004) Quantification of microstructural changes during first stage air drying of grape tissue. J Food Eng 62(2):159–164

    Article  Google Scholar 

  120. Ratti C (1994) Shrinkage during drying of foodstuffs. J Food Eng 23(1):91–105

    Article  Google Scholar 

  121. Reis FR, Lenzi MK, De Muñiz GIB, Nisgoski S, Masson ML (2012) Vacuum drying kinetics of yacon (Smallanthus sonchifolius) and the effect of process conditions on fractal dimension and rehydration capacity. Dry Technol 30(1):13–19

    Article  Google Scholar 

  122. Reis N, Griffiths R, Mantle M, Gladden L, Santos J (2006) MRI investigation of the evaporation of embedded liquid droplets from porous surfaces under different drying regimes. Int J Heat Mass Transf 49(5):951–961

    Article  CAS  Google Scholar 

  123. Reyes A, Vega R, Bustos R, Araneda C (2008) Effect of processing conditions on drying kinetics and particle microstructure of carrot. Dry Technol 26(10):1272–1285

    Article  CAS  Google Scholar 

  124. Romano G, Argyropoulos D, Nagle M, Khan M, Müller J (2012) Combination of digital images and laser light to predict moisture content and color of bell pepper simultaneously during drying. J Food Eng 109(3):438–448

    Article  Google Scholar 

  125. Roy P, Bertrand G, Coddet C (2005) Spray drying and sintering of zirconia based hollow powders. Powder Technol 157(1):20–26

    Article  CAS  Google Scholar 

  126. Ruiz-Cabrera M, Foucat L, Bonny J, Renou J, Daudin J (2005) Assessment of water diffusivity in gelatine gel from moisture profiles. I—non-destructive measurement of 1d moisture profiles during drying from 2d nuclear magnetic resonance images. J Food Eng 68(2):209–219

    Article  Google Scholar 

  127. Sampson DJ, Chang YK, Rupasinghe H, Zaman QU (2014) A dual-view computer-vision system for volume and image texture analysis in multiple apple slices drying. J Food Eng 127:49–57

    Article  Google Scholar 

  128. Sansiribhan S, Devahastin S, Soponronnarit S (2012) Generalized microstructural change and structure-quality indicators of a food product undergoing different drying methods and conditions. J Food Eng 109(1):148–154

    Article  Google Scholar 

  129. Sansiribhan S, Devahastin S, Soponronnarit S (2010) Quantitative evaluation of microstructural changes and their relations with some physical characteristics of food during drying. J Food Sci 75(7):E453–E461

    Article  CAS  Google Scholar 

  130. Shokri N, Lehmann P, Vontobel P, Or D (2008) Drying front and water content dynamics during evaporation from sand delineated by neutron radiography. Water Resour Res 44(6):W06418

    Article  Google Scholar 

  131. Stenström S, Bonazzi C, Foucat L (2009) Magnetic resonance imaging for determination of moisture profiles and drying curves. In: Mujumdar AS, Tsotsas E (eds) Modern drying technology. Wiley, Weinheim

    Google Scholar 

  132. Tang C-S, Cui Y-J, Shi B, Tang A-M, Liu C (2011) Desiccation and cracking behaviour of clay layer from slurry state under wetting–drying cycles. Geoderma 166(1):111–118

    Article  Google Scholar 

  133. Tao T, Peng X-F, Su A, Lee D-J, Mujumdar AS (2008) Modeling convective drying of wet cake. J Chin Inst Chem Eng 39(3):287–290

    Article  CAS  Google Scholar 

  134. Tao T, Peng X, Lee D (2006) Skin layer on thermally dried sludge cake. Dry Technol 24(8):1047–1052

    Article  Google Scholar 

  135. Tao T, Peng X, Lee D (2005) Structure of crack in thermally dried sludge cake. Dry Technol 23(7):1555–1568

    Article  Google Scholar 

  136. Tao T, Peng X, Lee D (2005) Thermal drying of wastewater sludge: change in drying area owing to volume shrinkage and crack development. Dry Technol 23(3):669–682

    Article  Google Scholar 

  137. Toye D, Crine M, Marchot P (2005) Imaging of liquid distribution in reactive distillation packings with a new high-energy X-ray tomograph. Meas Sci Technol 16(11):2213–2220

    Article  CAS  Google Scholar 

  138. Uday K, Singh D (2013) Investigation on cracking characteristics of fine-grained soils under varied environmental conditions. Dry Technol 31(11):1255–1266

    Article  Google Scholar 

  139. Udomkun P, Nagle M, Mahayothee B, Müller J (2014) Laser-based imaging system for non-invasive monitoring of quality changes of papaya during drying. Food Control 42:225–233

    Article  Google Scholar 

  140. Van Geet M, Swennen R, Wevers M (2000) Quantitative analysis of reservoir rocks by microfocus X-ray computerised tomography. Sediment Geol 132(1):25–36

    Article  Google Scholar 

  141. Voda A, Homan N, Witek M, Duijster A, Van Dalen G, Van Der Sman R, Nijsse J, Van Vliet L, Van As H, Van Duynhoven J (2012) The impact of freeze-drying on microstructure and rehydration properties of carrot. Food Res Int 49(2):687–693

    Article  CAS  Google Scholar 

  142. Wang S, Langrish T (2010) The use of surface active compounds as additives in spray drying. Dry Technol 28(3):341–348

    Article  CAS  Google Scholar 

  143. Wang W, Li A, Zhang X, Yin Y (2011) Multifractality analysis of crack images from indirect thermal drying of thin-film dewatered sludge. Phys A Stat Mech 390(14):2678–2685

    Article  Google Scholar 

  144. Wang Y, Kharaghani A, Metzger T, Tsotsas E (2012) Pore network drying model for particle aggregates: assessment by X-ray microtomography. Dry Technol 30(15):1800–1809

    Article  CAS  Google Scholar 

  145. Watanabe K, Lazarescu C, Shida S, Avramidis S (2012) A novel method of measuring moisture content distribution in timber during drying using CT scanning and image processing techniques. Dry Technol 30(3):256–262

    Article  Google Scholar 

  146. Witrowa-Rajchert D, Rząca M (2009) Effect of drying method on the microstructure and physical properties of dried apples. Dry Technol 27(7–8):903–909

    Article  Google Scholar 

  147. Xu P, Mujumdar A, Yu B (2009) Drying-induced cracks in thin film fabricated from colloidal dispersions. Dry Technol 27(5):636–652

    Article  Google Scholar 

  148. Yadollahinia A, Jahangiri M (2009) Shrinkage of potato slice during drying. J Food Eng 94(1):52–58

    Article  Google Scholar 

  149. Yan Z, Sousa-Gallagher MJ, Oliveira FA (2008) Shrinkage and porosity of banana, pineapple and mango slices during air-drying. J Food Eng 84(3):430–440

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by “the Fundamental Research Funds for the Central Universities (WUT: 2016IVA020).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Qian, ZQ. The Application of Image Acquisition and Analysis Techniques to the Field of Drying. Food Eng Rev 9, 13–35 (2017). https://doi.org/10.1007/s12393-016-9146-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-016-9146-2

Keywords

Navigation