Skip to main content
Log in

A SHORTROOT-Mediated Transcriptional Regulatory Network for Vascular Development in the Arabidopsis Shoot

  • Research Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

In plants, vascular development is a dynamic process that integrates extrinsic and intrinsic factors. In Arabidopsis (Arabidopsis thaliana), SHORTROOT (SHR) has been known to play key roles in regulating cell division and differentiation in root vascular development. However, the role of SHR in the shoot vasculature remains unknown. Here, we employed various experimental approaches to unravel SHR’s role in shoot vascular development. In hypocotyls and inflorescence stems, shr exhibited reduced cell numbers in the (pro)cambium. As a result, the daughter cells that would be incorporated into the phloem and xylem would become a shortage of supply, thereby causing precocious differentiation. By expression profiling, we identified a putative SHR-mediated transcriptional regulatory network (TRN), which includes a subset of the ETHYLENE RESPONSE FACTOR (ERF) family. Among these, we found that SHR directly regulated expression of ERF018, whose expression domains were largely overlapped with those of SHR. Additionally, we found that ERF018 overexpressors (ERF018-OXs) showed a reduction in cambium cell division in hypocotyls. Interestingly, the level of SHR transcripts was elevated in ERF018-OX hypocotyls. Taken together, our results provide insights into the previously uncharacterized role of SHR, implying that maintaining homeostasis of key regulators’ levels plays an important role in shoot vascular development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baima S, Nobili F, Sessa G, Lucchetti S, Ruberti I, Morelli G (1995) The expression of the Athb-8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana. Development 121:4171–4182

    Article  CAS  PubMed  Google Scholar 

  • Baima S, Possenti M, Matteucci A, Wisman E, Altamura MM, Ruberti I, Morelli G (2001) The Arabidopsis ATHB-8 HD-ZIP protein acts as a differentiation-promoting transcription factor of the vascular meristems. Plant Physiol 126:643–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benfey PN, Linstead PJ, Roberts K, Schiefelbein JW, Hauser MT, Aeschbacher RA (1993) Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119:57–70

    Article  CAS  PubMed  Google Scholar 

  • Bolt S, Zuther E, Zintl S, Hincha DK, Schmülling T (2017) ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation. Plant Cell Environ 40:108–120

    Article  CAS  PubMed  Google Scholar 

  • Bonke M, Thitamadee S, Mähönen AP, Hauser MT, Helariutta Y (2003) APL regulates vascular tissue identity in Arabidopsis. Nature 426:181–186

    Article  CAS  PubMed  Google Scholar 

  • Brown DM, Zeef LAH, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17:2281–2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caño-Delgado A, Yin Y, Yu C, Vafeados D, Mora-García S, Cheng J-C, Nam KH, Li J, Chory J (2004) BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131:5341–5351

    Article  PubMed  CAS  Google Scholar 

  • Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, Zhou J, Lindgren O, Moreno-Risueno MA, Vatén A, Thitamadee S, Campilho A, Sebastian J, Bowman JL, Helariutta Y, Benfey PN (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H-Y, Hsieh E-J, Cheng M-C, Chen C-Y, Hwang S-Y, Lin T-P (2016) ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) regulates jasmonic acid and abscisic acid biosynthesis and signaling through binding to a novel cis-element. New Phytol 211:599–613

    Article  CAS  PubMed  Google Scholar 

  • Cho H, Dang TVT, Hwang I (2017) Emergence of plant vascular system: roles of hormonal and non-hormonal regulatory networks. Curr Opin Plant Biol 35:91–97

    Article  CAS  PubMed  Google Scholar 

  • Clark NM, Fisher AP, Berckmans B, den Broeck LV, Nelson EC, Nguyen TT, Bustillo-Avendaño E, Zebell SG, Moreno-Risueno MA, Simon R, Gallagher KL, Sozzani R (2020) Protein complex stoichiometry and expression dynamics of transcription factors modulate stem cell division. Proc Natl Acad Sci USA 117:15332–15342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough S, Bent A (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cock JM, McCormick S (2001) A large family of genes that share homology with CLAVATA3. Plant Physiol 126:939–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz-Ramirez A, Diaz-Trivino S, Blilou I, Grieneisen VA, Sozzani R, Zamioudis C, Miskolczi P, Nieuwland J, Benjamins R, Dhonukshe P, Caballero-Perez J, Horvath B, Long Y, Mähönen AP, Zhang H, Xu J, Murray JA, Benfey PN, Bako L, Maree AF, Scheres B (2012) A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell division. Cell 150:1002–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ, Gallagher KL, Wang JY, Blilou I, Scheres B, Benfey PN (2007) An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316:421–425

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Hao Y, Kovtun M, Stolc V, Deng XW, Sakakibara H, Kojima M (2011) Genome-wide direct target analysis reveals a role for SHORT-ROOT in root vascular patterning through cytokinin homeostasis. Plant Physiol 157:1221–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui H, Hao Y, Kong D (2012) SCARECROW has a SHORT-ROOT-independent role in modulating the sugar response. Plant Physiol 158:1769–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui H, Kong D, Liu X, Hao Y (2014) SCARECROW, SCR-LIKE 23 and SHORT-ROOT control bundle sheath cell fate and function in Arabidopsis thaliana. Plant J 78:319–327

    Article  CAS  PubMed  Google Scholar 

  • Curtis M, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Rybel B, Mahonen AP, Helariutta Y, Weijers D (2016) Plant vascular development: from early specification to differentiation. Nat Rev Mol Cell Biol 17:30–40

    Article  PubMed  CAS  Google Scholar 

  • Dhar S, Kim J, Yoon EK, Jang S, Ko K, Lim J (2022) SHORT-ROOT controls cell elongation in the etiolated Arabidopsis hypocotyl. Mol Cells 45:243–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhondt S, Coppens F, De Winter F, Swarup K, Merks RM, Inzé D, Bennett MJ, Beemster GT (2010) SHORT-ROOT and SCARECROW regulate leaf growth in Arabidopsis by stimulating S-phase progression of the cell cycle. Plant Physiol 154:1183–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Didi V, Jackson P, Hejátko J (2015) Hormonal regulation of secondary cell wall formation. J Exp Bot 66:5015–5027

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Skirycz A, Claeys H, Maleux K, Dhondt S, Bodt SD, Bossche RV, Milde LD, Yoshizumi T, Matsui M, Inzé D (2013) ETHYLENE RESPONSE FACTOR6 acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis. Plant Physiol 162:319–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, Pikaard CS (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45:616–629

    Article  CAS  PubMed  Google Scholar 

  • Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774

    Article  CAS  PubMed  Google Scholar 

  • Etchells JP, Turner SR (2010) The PXY–CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137:767–774

    Article  CAS  PubMed  Google Scholar 

  • Etchells JP, Provost CM, Turner SR (2012) Plant vascular cell division is maintained by an interaction between PXY and ethylene signalling. PLoS Genet 8:e1002997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Etchells JP, Provost CM, Mishra L, Turner SR (2013) WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organization. Development 140:2224–2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etchells JP, Smit ME, Gaudinier A, Williams CJ, Brady SM (2016) A brief history of the TDIF–PXY signalling module: balancing meristem identity and differentiation during vascular development. New Phytol 209:474–484

    Article  CAS  PubMed  Google Scholar 

  • Fischer U, Kucukoglu M, Helariutta Y, Bhalerao RP (2019) The dynamics of cambial stem cell activity. Ann Rev Plant Biol 70:293–319

    Article  CAS  Google Scholar 

  • Fisher K, Turner S (2007) PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr Biol 17:1061–1066

    Article  CAS  PubMed  Google Scholar 

  • Fukaki H, Wysocka-Diller J, Kato T, Fujisawa H, Benfey PN, Tasaka M (1998) Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J 14:425–430

    Article  CAS  PubMed  Google Scholar 

  • Furuta KM, Hellmann E, Helariutta Y (2014a) Molecular control of cell specification and cell differentiation during procambial development. Ann Rev Plant Biol 65:607–638

    Article  CAS  Google Scholar 

  • Furuta KM, Yadav SR, Lehesranta S, Belevich I, Miyashima S, Heo JO, Vatén A, Lindgren O, De Rybel B, Van Isterdael G, Somervuo P, Lichtenberger R, Rocha R, Thitamadee S, Tähtiharju S, Auvinen P, Beeckman T, Jokitalo E, Helariutta Y (2014b) Plant development. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation. Science 345:933–937

    Article  CAS  PubMed  Google Scholar 

  • Gallagher KL, Benfey PN (2009) Both the conserved GRAS domain and nuclear localization are required for SHORT-ROOT movement. Plant J 57:785–797

    Article  CAS  PubMed  Google Scholar 

  • Gallagher KL, Paquette AJ, Nakajima K, Benfey PN (2004) Mechanisms regulating SHORT-ROOT intercellular movement. Curr Biol 14:1847–1851

    Article  CAS  PubMed  Google Scholar 

  • Gardiner J, Donner TJ, Scarpella E (2011) Simultaneous activation of SHR and ATHB8 expression defines switch to preprocambial cell state in Arabidopsis leaf development. Dev Dyn 240:261–270

    Article  CAS  PubMed  Google Scholar 

  • Hejátko J, Ryu H, Kim G-T, Dobesová R, Choi S, Choi SM, Soucek P, Horák J, Pekárová B, Palme K, Brzobohaty B, Hwang I (2009) The histidine kinases CYTOKININ-INDEPENDENT1 and ARABIDOPSIS HISTIDINE KINASE2 and 3 regulate vascular tissue development in Arabidopsis shoots. Plant Cell 21:2008–2021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555–567

    Article  CAS  PubMed  Google Scholar 

  • Hellmann E, Ko D, Ruonala R, Helariutta Y (2018) Plant vascular tissues-connecting tissues comes in all shapes. Plants 7:109

    Article  CAS  PubMed Central  Google Scholar 

  • Heo J-O, Chang KS, Kim IA, Lee M-H, Lee SA, Song SK, Lee MM, Lim J (2011) Funneling of gibberellin signaling by the GRAS transcription regulator SCARECROW-LIKE 3 in the Arabidopsis root. Proc Natl Acad Sci USA 108:2166–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi-Ito K, Matsubayashi Y, Fukuda H (2008) Non-cellautonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci USA 105:15208–15213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirakawa Y, Kondo Y, Fukuda H (2010) TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell 22:2618–2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • Ibañes M, Fàbregas N, Chory J, Caño-Delgado AI (2009) Brassinosteroid signaling and auxin transport are required to establish the periodic pattern of Arabidopsis shoot vascular bundles. Proc Natl Acad Sci USA 106:13630–13635

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikematsu S, Tasaka M, Torii KU, Uchida N (2017) ERECTA-family receptor kinase genes redundantly prevent premature progression of secondary growth in the Arabidopsis hypocotyl. New Phytol 213:1697–1709

    Article  CAS  PubMed  Google Scholar 

  • Illgen S, Zintl S, Zuther E, Hincha DK, Schmülling T (2020) Characterisation of the ERF102 to ERF105 genes of Arabidopsis thaliana and their role in the response to cold stress. Plant Mol Biol 103:303–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:842–845

    Article  CAS  PubMed  Google Scholar 

  • Ji J, Strable J, Shimizu R, Koenig D, Sinha N, Scanlon MJ (2010) WOX4 promotes procambial development. Plant Physiol 152:1346–1356

    Article  CAS  PubMed  Google Scholar 

  • Jouannet V, Brackmann K, Greb T (2015) (Pro)cambium formation and proliferation: two sides of the same coin? Curr Opin Plant Biol 23:54–60

    Article  PubMed  Google Scholar 

  • Jun JH, Fiume E, Fletcher JC (2008) The CLE family of plant polypeptide signaling molecules. Cell Mol Life Sci 65:743–755

    Article  CAS  PubMed  Google Scholar 

  • Jung J-H, Park C-M (2007) MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta 225:1327–1338

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Jung J-H, Reyes JL, Kim Y-S, Kim S-Y, Chung K-S, Kim JA, Lee M, Lee Y, Kim VN, Chua N-H, Park C-M (2005) microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J 42:84–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim G, Dhar S, Lim J (2017) The SHORT-ROOT regulatory network in the endodermis development of Arabidopsis roots and shoots. J Plant Biol 60:306–313

    Article  CAS  Google Scholar 

  • Kim H, Zhou J, Kumar D, Jang G, Ryu KH, Sebastian J, Miyashima S, Helariutta Y, Lee JY (2020) SHORTROOT-mediated intercellular signals coordinate phloem development in Arabidopsis roots. Plant Cell 32:1519–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koizumi K, Hayashi T, Gallagher KL (2012a) SCARECROW reinforces SHORT-ROOT signaling and inhibits periclinal cell divisions in the ground tissue by maintaining SHR at high levels in the endodermis. Plant Signal Behav 7:1573–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koizumi K, Hayashi T, Wu S, Gallagher KL (2012b) The SHORT-ROOT protein acts as a mobile, dose-dependent signal in patterning the ground tissue. Proc Natl Acad Sci USA 109:13010–13015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levesque MP, Vernoux T, Busch W, Cui H, Wang JY, Blilou I, Hassan H, Nakajima K, Matsumoto N, Lohmann JU, Scheres B, Benfey PN (2006) Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis. PLoS Biol 4:e143

    Article  PubMed  PubMed Central  Google Scholar 

  • Long Y, Goedhart J, Schneijderberg M, Terpstra I, Shimotohno A, Bouchet BP, Akhmanova A, Gadella TW Jr, Heidstra R, Scheres B, Blilou I (2015a) SCARECROW-LIKE23 and SCARECROW jointly specify endodermal cell fate but distinctly control SHORT-ROOT movement. Plant J 84:773–784

    Article  CAS  PubMed  Google Scholar 

  • Long Y, Smet W, Cruz-Ramírez A, Castelijns B, de Jonge W, Mähönen AP, Bouchet BP, Perez GS, Akhmanova A, Scheres B, Blilou I (2015b) Arabidopsis BIRD zinc finger proteins jointly stabilize tissue boundaries by confining the cell fate regulator SHORT-ROOT and contributing to fate specification. Plant Cell 27:1185–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long Y, Stahl Y, Weidtkamp-Peters S, Postma M, Zhou W, Goedhart J, Sànchez-Pérez M-I, Gadella TWJ, Simon R, Scheres B, Blilou I (2017) In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis roots. Nature 548:97–102

    Article  CAS  PubMed  Google Scholar 

  • Lucas M, Swarup R, Paponov IA, Swarup K, Casimiro I, Lake D, Peret B, Zappala S, Mairhofer S, Whitworth M (2011) SHORT-ROOT regulates primary, lateral, and adventitious root development in Arabidopsis. Plant Physiol 155:384–398

    Article  CAS  PubMed  Google Scholar 

  • Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav S-R, Helariutta Y, He X-Q, Fukuda H, Kang J, Brady SM, Patrick JW, Sperry J, Yoshida A, López-Millán A-F, Grusak MA, Kachroo P (2013) The plant vascular system: evolution, development and functions. J Integr Plant Biol 55:294–388

    Article  CAS  PubMed  Google Scholar 

  • Mitra PP, Loqué D (2014) Histochemical staining of Arabidopsis thaliana secondary cell wall elements. J vis Exp 13:51381

    Google Scholar 

  • Miyashima S, Koi S, Hashimoto T, Nakajima K (2011) Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root. Development 138:2303–2313

    Article  CAS  PubMed  Google Scholar 

  • Miyashima S, Sebastian J, Lee JY, Helariutta Y (2013) Stem cell function during plant vascular development. EMBO J 32:178–193

    Article  CAS  PubMed  Google Scholar 

  • Moffat CS, Ingle RA, Wathugala DL, Saunders NJ, Knight H, Knight MR (2012) ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in Arabidopsis. PLoS One 7:e35995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morita MT, Saito C, Nakano A, Tasaka M (2007) Endodermal-amyloplast less 1 is a novel allele of SHORT-ROOT. Adv Space Res 39:1127–1133

    Article  Google Scholar 

  • Nakajima K, Sena G, Nawy T, Benfey PN (2001) Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413:307–311

    Article  CAS  PubMed  Google Scholar 

  • Nieminen K, Blomster T, Helariutta Y, Mähönen AP (2015) Vascular cambium development. Arabidopsis Book 13:e0177

    Google Scholar 

  • Ohashi-Ito K, Fukuda H (2014) Initiation of vascular development. Physiol Plant 151:142–146

    Article  CAS  PubMed  Google Scholar 

  • Pardal R, Heidstra R (2021) Root stem cell niche networks: its’s complexed! Insights from Arabidopsis. J Exp Bot 72:6727–6738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE (2005) Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17:61–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiang Y, Wu J, Han H, Wang G (2013) CLE peptides in vascular development. J Integr Plant Biol 55:389–394

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran P, Carlsbecker A, Etchells JP (2017) Class III HD-ZIPs govern vascular cell fate: an HD view on patterning and differentiation. J Exp Bot 68:55–69

    Article  CAS  PubMed  Google Scholar 

  • Sabatini S, Heidstra R, Wildwater M, Scheres B (2003) SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17:354–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito C, Morita MT, Kato T, Tasaka M (2005) Amyloplasts and vacuolar membrane dynamics in the living graviperceptive cell of the Arabidopsis inflorescence stem. Plant Cell 17:548–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheres B, Laurenzio LD, Willemsen V, Hauser MT, Janmaat K, Weisbeek P, Benfey PN (1995) Mutations affecting the radial organisation of the Arabidopsis root display specific defects throughout the embryonic axis. Development 121:53–62

    Article  CAS  Google Scholar 

  • Sena G, Jung J, Benfey PN (2004) A broad competence to respond to SHORT-ROOT necessitates tight regulation over its cell-cell movement. Development 131:2817–2826

    Article  CAS  PubMed  Google Scholar 

  • Shi D, Lebovka I, Loṕez-Salmeroń V, Sanchez P, Greb T (2019) Bifacial cambium stem cells generate xylem and phloem during radial plant growth. Development 146:1–8

    Article  CAS  Google Scholar 

  • Smetana O, Makila R, Lyu M, Amiryousefi A, Rodríguez FS, Wu M-F, Solé-Gil A, Gavarrón ML, Siligato R, Miyashima S, Roszak P, Blomster T, Reed JW, Broholm S, Mähönen AP (2019) High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature 565:485–489

    Article  CAS  PubMed  Google Scholar 

  • Smit ME, McGregor SR, Sun H, Gough C, Bågman A-M, Soyars CL, Kroon JT, Gaudinier A, Williams CJ, Yang X, Nimchuk ZL, Weijers D, Turner SR, Brady SM, Etchells JP (2020) A PXY-mediated transcriptional network integrates signaling mechanisms to control vascular development in Arabidopsis. Plant Cell 32:319–335

    Article  CAS  PubMed  Google Scholar 

  • Smith RA, Schuetz M, Karlen SD, Bird D, Tokunaga N, Sato Y, Mansfield SD, Ralph J, Samuels AL (2017) Defining the diverse cell populations contributing to lignification in Arabidopsis stems. Plant Physiol 174:1028–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sozzani R, Cui H, Moreno-Risueno MA, Busch W, Van Norman JM, Vernoux T, Brady SM, Dewitte W, Murray JA, Benfey PN (2010) Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature 466:128–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suer S, Agusti J, Sanchez P, Schwarz M, Greb T (2011) WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis. Plant Cell 23:3247–3259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tasaka M, Kato T, Fukaki H (1999) The endodermis and shoot gravitropism. Trends Plant Sci 4:103–107

    Article  CAS  PubMed  Google Scholar 

  • Turley EK, Etchells JP (2022) Laying it on thick: a study in secondary growth. J Exp Bot 73:665–679

    Article  PubMed  Google Scholar 

  • Wang H (2020) Regulation of vascular cambium activity. Plant Sci 291:110322

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Bagdassarian KS, Doherty RE, Kroon JT, Connor KA, Wang XY, Wang W, Jermyn IH, Turner SR, Etchells JP (2019) Organ-specific genetic interactions between paralogues of the PXY and ER receptor kinases enforce radial patterning in Arabidopsis vascular tissue. Development 146:177105

    Article  CAS  Google Scholar 

  • Welch D, Hassan H, Blilou I, Immink R, Heidstra R, Scheres B (2007) Arabidopsis JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and stabilize tissue boundaries by restricting SHORT-ROOT action. Genes Dev 21:2196–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Wang S, Li S, Du Q, Qi L, Wang W, Chen J, Wang H (2020) Activation of ACS7 in Arabidopsis affects vascular development and demonstrates a link between ethylene synthesis and cambial activity. J Exp Bot 71:7160–7170

    Article  CAS  PubMed  Google Scholar 

  • Yang BJ, Minne M, Brunoni F, Plačková L, Petřík I, Sun Y, Nolf J, Smet W, Verstaen K, Wendrich JR, Eekhout T, Hoyerová K, Isterdael GV, Haustraete J, Bishopp A, Farcot E, Novák O, Saeys Y, Rybel BD (2021) Non-cell autonomous and spatiotemporal signalling from a tissue organizer orchestrates root vascular development. Nat Plants 7:1485–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon EK, Dhar S, Lee M-H, Song JH, Lee SA, Kim G, Jang S, Choi JW, Choe J-E, Kim JH, Lee MM, Lim J (2016) Conservation and diversification of the SHR-SCR-SCL23 regulatory network in the development of the functional endodermis in Arabidopsis shoots. Mol Plant 9:1197–1209

    Article  CAS  PubMed  Google Scholar 

  • Yu N-I, Lee SA, Lee M-H, Heo J-O, Chang KS, Lim J (2010) Characterization of SHORT-ROOT function in the Arabidopsis root vascular system. Mol Cells 30:113–119

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Lin X, Han Z, Qu LJ, Chai J (2016) Crystal structure of PXY–TDIF complex reveals a conserved recognition mechanism among CLE peptide–receptor pairs. Cell Res 26:543–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Eswaran G, Alonso-Serra J, Kucukoglu M, Xiang J, Yang W, Elo A, Nieminen K, Damén T, Joung J-G, Yun J-Y, Lee J-H, Ragni L, de Reuille PB, Ahnert SE, Lee J-Y, Mähönen AP, Helariutta Y (2019) Transcriptional regulatory framework for vascular cambium development in Arabidopsis roots. Nat Plants 5:1033–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong R, Lee C, Zhou J, McCarthy RL, Ye Z-H (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20:2763–2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Konkuk University Research Fund 2018. We are grateful to Seungwoo Kim for technical assistance. We also thank Dr. Philip Benfey and Arabidopsis Biological Resource Center (ABRC) for plant lines.

Author information

Authors and Affiliations

Authors

Contributions

KK, EKY, and JL conceived and designed the research plans. KK and EKY performed experiments. EKY analyzed microarray data. SD conducted ChIP-qPCR. JO performed plant work including genotyping. KK, EKY, and JL wrote the manuscript with contributions of all the authors.

Corresponding author

Correspondence to Jun Lim.

Ethics declarations

Conflict of Interest

All the authors agreed on the contents of the paper and the authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3698 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, K., Yoon, E.K., Dhar, S. et al. A SHORTROOT-Mediated Transcriptional Regulatory Network for Vascular Development in the Arabidopsis Shoot. J. Plant Biol. 65, 341–355 (2022). https://doi.org/10.1007/s12374-022-09355-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-022-09355-4

Keywords

Navigation