Skip to main content
Log in

A Stress-Responsive CaM-Binding Transcription Factor, bZIP4, Confers Abiotic Stress Resistance in Arabidopsis

  • Research Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

The basic leucine zipper (bZIP) transcription factors (TFs) function as regulators of many key developmental and physiological processes in all eukaryotes. In this study, we characterized the function of Arabidopsis bZIP4, a group S bZIP, whose function was not known. We confirmed that bZIP4 localizes to the nucleus and has DNA-binding affinity. By qRT-PCR and GUS histochemical analysis, we showed that bZIP4 is specifically expressed in root and that its expression is induced by abiotic stress and ABA. By phenotypic analysis, we demonstrated that the root length and the germination rate of bZIP4 overexpression (bZIP4-Ox) were significantly longer and higher than those of the WT and bZIP4-SRDX under higher salt and glucose concentrations, indicating that bZIP4-Ox is insensitive and tolerant to abiotic stress. Despite that, we found that bZIP4-Ox had enhanced expression of genes encoding protein phosphatases suppressing ABA responsiveness. We also confirmed that bZIP4 interacts with CaM1 and showed that its DNA-binding affinity is inhibited by interaction with CaM1. We propose a model in which the increased cytosolic calcium concentration under stress conditions activates CaM1 to bind bZIP4 to remove it from promoters of genes encoding ABA negative regulators, allowing the plants to operate on a typical ABA signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

BiFC:

Bimolecular fluorescence complementation

bZIP4:

Basic region leucine zipper protein 4

CaM1:

Calmodulin1

CAMTA:

CaM-binding transcription activator

GFP:

Green fluorescence protein

GST:

Glutathione S-transferase

GUS:

Beta-glucuronidase

His:

Poly-histidine

K.O:

Knock-out

MS medium:

Murashige and skoog medium

Ox:

Overexpression

qRT-PCR:

Quantitative real-time reverse transcription-polymerase chain reaction

RT-PCR:

Reverse transcription-PCR

TF:

Transcription factor

WT:

Wild type

X-gluc:

5-Bromo-4-chloro-3-indolyl glucuronide

YFP:

Yellow fluorescence protein

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, Leon P (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev 14:2085–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee A, Roychoudhury A (2017) Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma 254:3–16

    Article  CAS  PubMed  Google Scholar 

  • Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cui MH, Yoo KS, Hyoung S, Nguyen HT, Kim YY, Kim HJ, Ok SH, Yoo SD, Shin JS (2013) An Arabidopsis R2R3-MYB transcription factor, AtMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance. FEBS Lett 587:1773–1778

    Article  CAS  PubMed  Google Scholar 

  • Deger AG, Scherzer S, Nuhkat M, Kedzierska J, Kollist H, Brosché M, Unyayar S, Boudsocq M, Hedrich R, Roelfsema MRG (2015) Guard cell SLAC1-type anion channels mediate flagellin-induced stomatal closure. New Phytol 208:162–173

    Article  Google Scholar 

  • Dekkers BJ, Schuurmans JA, Smeekens SC (2008) Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis. Plant Mol Biol 67:151–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Droge-Laser W, Weiste C (2018) The C/S1bZIP network: a regulatory hub orchestrating plant energy homeostasis. Trends Plant Sci 23:422–433

    Article  PubMed  Google Scholar 

  • Droge-Laser W, Snoek BL, Snel B, Weiste C (2018) The Arabidopsis bZIP transcription factor family-an update. CurrOpin Plant Biol 45:36–49

    Google Scholar 

  • Edel KH, Kudla J (2016) Integration of calcium and ABAsignaling. CurrOpin Plant Biol 33:83–91

    CAS  Google Scholar 

  • Ehlert A, Weltmeier F, Wang X, Mayer CS, Smeekens S, Vicente-Carbajosa J, Droge-Laser W (2006) Two-hybrid protein-protein interaction analysis in Arabidopsis protoplasts: establishment of a heterodimerization map of group C and group S bZIP transcription factors. Plant J 46:890–900

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14(Suppl):S15-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Gao J, Zhu X, Song Y, Li Z, Ren G, Zhou X, Kuai B (2016) ABF2, ABF3, and ABF4 promote ABA-mediated chlorophyll degradation and leaf senescence by transcriptional activation of chlorophyll catabolic genes and senescence-associated genes in arabidopsis. Mol Plant 9:1272–1285

    Article  CAS  PubMed  Google Scholar 

  • Hartmann L, Pedrotti L, Weiste C, Fekete A, Schierstaedt J, Gottler J, Kempa S, Krischke M, Dietrich K, Mueller MJ et al (2015) Crosstalk between Two bZIPsignaling pathways orchestrates salt-induced metabolic reprogramming in arabidopsis roots. Plant Cell 27:2244–2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong JH, Seah SW, Xu J (2013) The root of ABA action in environmental stress response. Plant Cell Rep 32:971–983

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Waadt R, Nuhkat M, Kollist H, Hedrich R, Roelfsema MRG (2019) Calcium signals in guard cells enhance the efficiency by which abscisic acid triggers stomatal closure. New Phytol 224:177–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    Article  CAS  PubMed  Google Scholar 

  • Izawa T, Foster R, Chua NH (1993) Plant bZIP protein DNA binding specificity. J Mol Biol 230:1131–1144

    Article  CAS  PubMed  Google Scholar 

  • Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F, B Z I P R G (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7: 106–11

  • Kang SG, Price J, Lin PC, Hong JC, Jang JC (2010) The arabidopsis bZIP1 transcription factor is involved in sugar signaling, protein networking, and DNA binding. Mol Plant 3:361–373

    Article  CAS  PubMed  Google Scholar 

  • Kim YY, Cui MH, Noh MS, Jung KW, Shin JS (2017) The FBA motif-containing protein AFBA1 acts as a novel positive regulator of ABA response in Arabidopsis. Plant Cell Physiol 58:574–586

    Article  CAS  PubMed  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet MGG 204:383–396

    Article  CAS  Google Scholar 

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung J, Merlot S, Giraudat J (1997) The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9:759–771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levchenko V, Konrad KR, Dietrich P, Roelfsema MRG, Hedrich R (2005) Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals. Proc Natl Acad Sci 102:4203–4208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahfouz MM, Li L, Piatek M, Fang X, Mansour H, Bangarusamy DK, Zhu JK (2012) Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein. Plant Mol Biol 78:311–321

    Article  CAS  PubMed  Google Scholar 

  • Maierhofer T, Diekmann M, Offenborn JN, Lind C, Bauer H, Hashimoto K, Ka S a-R, Luan S, Kudla J, Geiger D, et al. (2014) Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid. Sci Signal 7: ra86

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nguyen HT, Kim SY, Cho KM, Hong JC, Shin JS, Kim HJ (2016) A transcription factor gammaMYB1 binds to the P1BS cis-element and activates PLA2-gamma expression with its co-activator gammaMYB2. Plant Cell Physiol 57:784–797

    Article  CAS  PubMed  Google Scholar 

  • Popescu SC, Popescu GV, Bachan S, Zhang Z, Seay M, Gerstein M, Snyder M, Dinesh-Kumar SP (2007) Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci USA 104:4730–4735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranty B, Aldon D, Galaud JP (2006) Plant calmodulins and calmodulin-related proteins: multifaceted relays to decode calcium signals. Plant Signal Behav 1:96–104

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy AS, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues A, Adamo M, Crozet P, Margalha L, Confraria A, Martinho C, Elias A, Rabissi A, Lumbreras V, Gonzalez-Guzman M et al (2013) ABI1 and PP2CA phosphatases are negative regulators of Snf1-related protein kinase1signaling in Arabidopsis. Plant Cell 25:3871–3884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snedden WA, Fromm H (1998) Calmodulin, calmodulin-related proteins and plant responses to the environment. Trends Plant Sci 3:299–304

    Article  Google Scholar 

  • Song YH, Yoo CM, Hong AP, Kim SH, Jeong HJ, Shin SY, Kim HJ, Yun DJ, Lim CO, Bahk JD et al (2008) DNA-binding study identifies C-box and hybrid C/G-box or C/A-box motifs as high-affinity binding sites for STF1 and LONG HYPOCOTYL5 proteins. Plant Physiol 146:1862–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun LR, Wang YB, He SB, Hao FS (2018) Mechanisms for abscisic acid inhibition of primary root growth. Plant Signal Behav 13:e1500069

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan W, Zhang D, Zhou H, Zheng T, Yin Y, Lin H (2018) Transcription factor HAT1 is a substrate of SnRK2.3 kinase and negatively regulates ABA synthesis and signaling in Arabidopsis responding to drought. PLoS Genet 14: e1007336

  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51:1821–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M et al (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Datla R, Georges F, Loewen M, Cutler AJ (1995) Promoters from kin1 and cor6.6, two homologous Arabidopsis thaliana genes: transcriptional regulation and gene expression induced by low temperature, ABA, osmoticum and dehydration. Plant Mol Biol 28:605–617

    Article  CAS  PubMed  Google Scholar 

  • Weiste C, Droge-Laser W (2014) The Arabidopsis transcription factor bZIP11 activates auxin-mediated transcription by recruiting the histone acetylation machinery. Nat Commun 5:3883

    Article  CAS  PubMed  Google Scholar 

  • Weiste C, Pedrotti L, Selvanayagam J, Muralidhara P, Froschel C, Novak O, Ljung K, Hanson J, Droge-Laser W (2017) The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth. PLoS Genet 13:e1006607

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoo JH, Park CY, Kim JC, Heo WD, Cheong MS, Park HC, Kim MC, Moon BC, Choi MS, Kang YH et al (2005) Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in arabidopsis. J Biol Chem 280:3697–3706

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97:111–119

    Article  Google Scholar 

  • Zhang Q, Kong X, Yu Q, Ding Y, Li X, Yang Y (2019) Responses of PYR/PYL/RCARABA receptors to contrasting stresses, heat and cold in arabidopsis. Plant Signal Behav 14:1670596

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou YP, Wu JH, Xiao WH, Chen W, Chen QH, Fan T, Xie CP, Tian CE (2018) Arabidopsis IQM4, a novel calmodulin-binding protein, is involved with seed dormancy and germination in arabidopsis. Front Plant Sci 9:721

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) Grant (2019R1F1A1060014) funded by the Ministry of Science and ICT, Korea government. This work was also partially supported by Korea University.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, YYK, KWJ and JSS; validation, YYK and KWJ; formal analysis, YYK, MN and AKMMH; investigation, YYK, MN and AKMMH; writing–original draft preparation, MN; writing–review and editing, MN and JSS; supervision, YYK, and JSS; project administration and funding acquisition, JSS. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Yun Young Kim or Jeong Sheop Shin.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 645 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noh, M., Huque, A.K.M.M., Jung, K.W. et al. A Stress-Responsive CaM-Binding Transcription Factor, bZIP4, Confers Abiotic Stress Resistance in Arabidopsis. J. Plant Biol. 64, 359–370 (2021). https://doi.org/10.1007/s12374-021-09315-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-021-09315-4

Keywords

Navigation