Skip to main content
Log in

Characterization of Rosa chinensis CBF Genes and the Function of RcCBF6 in Cold Tolerance

  • Research Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

As a class of AP2 family transcription factors, C-repeat binding factor (CBF) gene family plays an important role in resisting low-temperature stress and improving cold tolerance of plants. Rosa chinensis is an important horticultural and ornamental plant, but little is known about the molecular characteristics of CBF genes in R. chinensis. In our study, six RcCBFs members were identified at R. chinensis whole genome, including one member RcCBF1 on Chromosome 1 and other five members RcCBF2-6 on Chromosome 7. The analysis of cis-acting elements indicated that there were various cis-acting elements related to stress, development, hormone, and light. The expression profiles showed that most of RcCBFs were mainly expressed in root, and the expression levels of RcCBFs were significantly induced by low-temperature stress, especially RcCBF6. To verify the function of RcCBF6, we generated its overexpressing transgenic lines in Arabidopsis thaliana. The RcCBF6-overexpressing plants exhibited higher tolerance to cold stress as evidenced by a better growth and higher antioxidative enzyme activities than the wild-type plants. Furthermore, the expression levels of some cold-response genes were up-regulated in the transgenic plants, such as KIN1, RD29A, LTP3, and GOLS3. Our study contributes to a better understanding of RcCBF gene family and provides a foundation for the further functional research of RcCBFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akhtar M, Jaiswal A, Taj G, Jaiswal J, Qureshi M, Singh N (2012) DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. J Genet 91:385–395

    Article  CAS  PubMed  Google Scholar 

  • Artlip T, McDermaid A, Ma Q, Wisniewski M (2019) Differential gene expression in non-transgenic and transgenic “M. 26” apple overexpressing a peach CBF gene during the transition from eco-dormancy to bud break. Hortic Res 6:1–16

    Article  CAS  Google Scholar 

  • Byun MY, Lee J, Cui LH, Kang Y, Oh TK, Park H, Lee H, Kim WT (2015) Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants. Plant Sci 236:61–74

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchishinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-, salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  CAS  PubMed  Google Scholar 

  • Fowler SG, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold- induced COR gene expression. Plant J 16:433–442

    Article  CAS  PubMed  Google Scholar 

  • Guy C, Kaplan F, Kopka J, Selbig J, Hincha DK (2008) Metabolomics of temperature stress. Physiol Plantarum 132:220–235

    CAS  Google Scholar 

  • Huang Q, Qian X, Jiang T, Zheng X (2019) Effect of eugenol fumigation treatment on chilling injury and CBF gene expression in eggplant fruit during cold storage. Food Chem 292:143–150

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  CAS  PubMed  Google Scholar 

  • Jaglo K, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang J, Deits TL, Thomashow MF (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagloottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  CAS  Google Scholar 

  • Jiang C, Xu J, Zhang H, Zhang X, Shi J, Li M, Ming F (2009) A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant Cell Environ 32:1046–1059

    Article  CAS  PubMed  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J, Myint Phyu Sin Htwe N, Fujita Y, Sekita S, Shinozaki K (2015) Soybean DREB 1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J 81:505–518

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, Mcwilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lee CM, Thomashow MF (2012) Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. P Natl Acad Sci USA 109:15054–15059

    Article  CAS  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van DPY, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:257–260

    Article  CAS  Google Scholar 

  • Li J, Zhang J, Jia H, Li Y, Xu X, Wang L, Lu M (2016) The Populus trichocarpa PtHSP17.8 involved in heat and salt stress tolerances. Plant Cell Rep 35:1587–1599

    Article  CAS  PubMed  Google Scholar 

  • Li X, Kang Y, Wan S, Chen X, Xu J (2015) Effect of drip-irrigation with saline water on Chinese rose (Rosa chinensis) during reclamation of very heavy coastal saline soil in a field trial. Sci Hortic 186:163–171

    Article  CAS  Google Scholar 

  • Liu J, Shi Y, Yang S (2018) Insights into the regulation of C-repeat binding factors in plant cold signaling. J Integr Plant Boil 60:780–795

    Article  Google Scholar 

  • Mitchell AL, Chang H, Daugherty L, Fraser M, Hunter S, Lopez R, Mcanulla C, Mcmenamin C, Nuka G, Pesseat S (2015) The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res 43:213–221

    Article  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237–251

    Article  CAS  PubMed  Google Scholar 

  • Mohseni S, Che H, Djillali Z, Dumont E, Nankeu J, Danyluk J (2012) Wheat CBF gene family: identification of polymorphisms in the CBF coding sequence. Genome 55:865–881

    Article  CAS  PubMed  Google Scholar 

  • Navarro M, Ayax C, Martinez Y, Laur J, El Kayal W, Marque C, Teulières C (2011) Two EguCBF1 genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development. Plant Biotechnol J 9:50–63

    Article  CAS  PubMed  Google Scholar 

  • Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. P Natl Acad Sci USA 101:3985–3990

    Article  CAS  Google Scholar 

  • Novillo F, Medina J, Salinas J (2007) Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. P Natl Acad Sci USA 104:21002–21007

    Article  CAS  Google Scholar 

  • Park S, Lee CM, Doherty CJ, Gilmour SJ, Kim Y, Thomashow MF (2015) Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. Plant J 82:193–207

    Article  CAS  PubMed  Google Scholar 

  • Priest HD, Filichkin SA, Mockler TC (2009) cis-regulatory elements in plant cell signaling. Curr Opin Plant Biol 12:643–649

    Article  CAS  PubMed  Google Scholar 

  • Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Yamaguchi-Shinozaki K (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45:1042–1052

    Article  CAS  PubMed  Google Scholar 

  • Raymond O, Gouzy J, Just J, Badouin H, Verdenaud M, Lemainque A, Vergne P, Moja S, Choisne N, Pont C (2018) The Rosa genome provides new insights into the domestication of modern roses. Nat Genet 50:772–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu J, Hong S, Jo S, Woo J, Lee S, ChungMo P (2014) Molecular and functional characterization of cold-responsive C-repeat binding factors from Brachypodium distachyon. BMC Plant Biol 14:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi H, Liu W, Yao Y, Wei Y, Chan Z (2017) Alcohol dehydrogenase 1 (ADH1) confers both abiotic and biotic stress resistance in Arabidopsis. Plant Sci 262:24–31

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Ding Y, Yang S (2018) Molecular regulation of CBF signaling in cold acclimation. Trends Plant Sci 23:623–637

    Article  CAS  PubMed  Google Scholar 

  • Si J, Wang JH, Zhang LJ, Zhang H, Liu YJ, An LZ (2009) CbCOR15, a cold-regulated gene from alpine Chorispora bungeana, confers cold tolerance in transgenic tobacco. J Plant Biol 52:593

    Article  CAS  Google Scholar 

  • Skinner JS, Zitzewitz JV, Szűcs P, Marquez-Cedillo L, Filichkin T, Amundsen K, Stockinger EJ, Thomashow MF, Chen THH, Hayes PM (2005) Structural, functional, and phylogenetic characterization of a large CBF gene family in Barley. Plant Mol Boil 59:533–551

    Article  CAS  Google Scholar 

  • Sror HA, Tischendorf G, Sieg F, Schmitt JM, Hincha DK (2003) Cryoprotectin protects thylakoids during a freeze-thaw cycle by a mechanism involving stable membrane binding. Cryobiology 47:191–203

    Article  CAS  PubMed  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold- inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson DS, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50:571–599

    Article  CAS  Google Scholar 

  • Tillett RL, Wheatley MD, Tattersall EA, Schlauch KA, Cramer GR, Cushman JC (2012) The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape. Plant Biotechnol J 10:105–124

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Chen X, Guo Y, Zheng Y, Yue C, Yang J, Ye N (2019) Identification of CBF transcription factors in tea plants and a survey of potential CBF target genes under low temperature. Int J Mol Sci 20:5137

    Article  CAS  PubMed Central  Google Scholar 

  • Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ (2010) Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnol J 8:749–771

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski M, Norelli J, Artlip T (2015) Overexpression of a peach CBF gene in apple: a model for understanding the integration of growth, dormancy, and cold hardiness in woody plants. Front Plant Sci 6:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin Y, Ma QP, Zhu ZX, Cui QY, Chen CS, Chen X, Fang WP, Li XH (2016) Functional analysis of CsCBF3 transcription factor in tea plant (Camellia sinensis) under cold stress. Plant Growth Regul 80:335–343

    Article  CAS  Google Scholar 

  • Zhang X, Fowler SG, Cheng H, Lou Y, Rhee SY, Stockinger EJ, Thomashow MF (2004) Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J 39:905–919

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Zhang Z, Xie S, Si T, Li Y, Zhu JK (2016) Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis. Plant Physiol 171:2744–2759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Shen C, Wu L, Tang K, Lin J (2011) CBF-dependent signaling pathway: a key responder to low temperature stress in plants. Crit Rev Biotechnol 31:186–192

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds of Chinese Academy of Forestry (CAFYBB2016MA008, CAFYBB2017ZD005 and CAFYBB2019ZY003).

Author information

Authors and Affiliations

Authors

Contributions

JL, JS, and XX designed the research. JL, GZ, SL, and JS performed the experiments and data analysis. JL wrote the manuscript. ZT, JS, and XX contributed with valuable discussions. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jianbo Li, Jingshuang Sun or Xuebing Xin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 Fig. S1. Prediction of 3D structure of RcCBF proteins. (TIF 10862 kb)

12374_2020_9248_MOESM2_ESM.tif

Supplementary file2 Fig. S2. Distribution of the conserved motifs in RcCBF proteins from R. chinensis, A. thaliana, O. sativa, P. trichocarpa, and C. sinensis. Ten motifs were marked with different colors. (TIF 1753 kb)

12374_2020_9248_MOESM3_ESM.tif

Supplementary file3 Fig. S3. Expression levels of 35 cold-responsive genes in the WT and RcCBF6-overexpressing plants. (TIF 5051 kb)

12374_2020_9248_MOESM4_ESM.tif

Supplementary file4 Fig. S4. Various cis-acting elements in the promoter (2.0 kb upstream of the translation initiation sites) of AtCBF genes. The statistics of total number of RcCBFs contain various cis-acting elements. (TIF 3954 kb)

Supplementary file5 (XLSX 9 kb)

Supplementary file6 (XLSX 11 kb)

Supplementary file7 (XLSX 13 kb)

Supplementary file8 (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zheng, G., Li, S. et al. Characterization of Rosa chinensis CBF Genes and the Function of RcCBF6 in Cold Tolerance. J. Plant Biol. 63, 267–278 (2020). https://doi.org/10.1007/s12374-020-09248-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-020-09248-4

Keywords

Navigation