Skip to main content
Log in

Biotic stress related functions of hydroxycinnamic acid amide in plants

  • Review Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

The study of hydroxycinnamic acid amides (HCAAs) which is a group of secondary metabolites in plants have been an interesting research subject and become of greater importance at present. Several plant amides have shown important role in plant-pathogen interaction and also in different biotic and abiotic stresses. This review paper aims to give a thorough understanding on the emerging functions of HCAA accumulation in plants related to pathogen infections. In addition, this paper discusses the current biochemical mechanisms on the formation of various classes of HCAAs in relation to plant immunity against pathogens. HCAAs contribute to several developmental processes as well as both biotic and abiotic stress responses which remains unclear up to date and there is a need to further investigate it from different plant species of various tissues or organs and cell cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: Molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  Google Scholar 

  • Alcázar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876

    PubMed  Google Scholar 

  • Araji S, Grammer TA, Gertzen R, Anderson SD, Mikulic-Petkovsek M, Veberic R, Phu ML, Solar A, Leslie CA, Dandekar AM (2014) Novel roles for the polyphenol oxidase enzyme in secondary metabolism and the regulation of cell death in walnut.

    Google Scholar 

  • Baker CJ, Whitaker BD, Mock NM, Rice CP, Roberts DP, Deahl KL, Ueng PP, Aver’yanov AA (2008) Differential induction of redox sensitive extracellular phenolic amides in potato. Physiol Mol Plant Pathol 73:109–115

    CAS  Google Scholar 

  • Baker CJ, Whitaker BD, Roberts DP, Mock NM, Rice CP, Deahl KL, Aver'yanov AA (2005) Induction of redox sensitive extracellular phenolics during plant–bacterial interactions. Physiol Mol Plant Pathol 66:90–98

    CAS  Google Scholar 

  • Bassard J-E, Ullmann P, Bernier F, Werck-Reichhart D (2010) Phenolamides: Bridging polyamines to the phenolic metabolism. Phytochemistry 71:1808–1824

    Article  CAS  PubMed  Google Scholar 

  • Bednarek P, Winter J, Hamberger B, Oldham NJ, Schneider B, Tan J, Hahlbrock K (2004) Induction of 3-o-ß-d-ribofuranosyl adenosine during compatible, but not during incompatible, interactions of Arabidopsis thaliana or Lycopersicon esculentum with Pseudomonas syringae pathovar tomato. Planta 218:668–672

    Article  CAS  PubMed  Google Scholar 

  • Bellés JM, López-Gresa MP, Fayos J, Pallás V, Rodrigo I, Conejero V (2008) Induction of cinnamate 4-hydroxylase and phenylpropanoids in virus-infected cucumber and melon plants. Plant Sci 174:524–533

    Google Scholar 

  • Bollina V, Kumaraswamy GK, Kushalappa AC, Choo TM, Dion Y, Rioux S, Faubert D, Hamzehzarghani H (2010) Mass spectrometrybased metabolomics application to identify quantitative resistancerelated metabolites in barley against fusarium head blight. Mol Plant Pathol 11:769–782

    CAS  PubMed  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: Recent development. Plant Sci 140:103–125

    CAS  Google Scholar 

  • Campos L, Lisón P, López-Gresa MP, Rodrigo I, Zacarés L, Conejero V, Bellés JM (2014) Transgenic tomato plants overexpressing tyramine n-hydroxycinnamoyltransferase exhibit elevated hydroxycinnamic acid amide levels and enhanced resistance to Pseudomonas syringae. Mol Plant Microbe Interact 27:1159–1169

    CAS  PubMed  Google Scholar 

  • Choi YH, Kim HK, Linthorst HJ, Hollander JG, Lefeber AW, Erkelens C, Nuzillard J-M, Verpoorte R (2006) NMR metabolomics to revisit the tobacco mosaic virus infection in Nicotiana tabacum leaves. J Nat Prod 69:742–748

    CAS  PubMed  Google Scholar 

  • Clarke D (1982) The accumulation of cinnamic acid amides in the cell walls of potato tissue as an early response to fungal attack. Active defense mechanisms in plants 37:321–322

    Google Scholar 

  • Cuypers B, Hahlbrock K (1988) Immunohistochemical studies of compatible and incompatible interactions of potato leaves with Phytophthora infestans and of the nonhost response to Phytophthora megasperma. Can J Bot 66:700–705

    Google Scholar 

  • D’Auria JC (2006) Acyltransferases in plants: A good time to be BAHD. Curr Opin Plant Biol 9:331–340

    PubMed  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy M, Wang L (2002) The phenylpropanoid pathway and plant defence—a genomics perspective. Mol Plant Pathol 3:371–390

    CAS  PubMed  Google Scholar 

  • Edwards R, Dixon DP, Walbot V (2000) Plant glutathione- s-transferases: Enzymes with multiple functions in sickness and in health. Trends Plant Sci 5:193–198

    CAS  PubMed  Google Scholar 

  • Etalo DW, Stulemeijer IJ, van Esse HP, de Vos RC, Bouwmeester HJ, Joosten MH (2013) System-wide hypersensitive responseassociated transcriptome and metabolome reprogramming in tomato. Plant Physiol 162:1599–1617

    PubMed Central  CAS  PubMed  Google Scholar 

  • Facchini PJ (1998) Temporal correlation of tyramine metabolism with alkaloid and amide biosynthesis in elicited opium poppy cell cultures. Phytochemistry 49:481–490

    Article  CAS  Google Scholar 

  • Facchini PJ, Hagel J, Zulak KG (2002) Hydroxycinnamic acid amide metabolism: Physiology and biochemistry. Can J Bot 80:577–589

    CAS  Google Scholar 

  • Fayos J, Bellés JM, Lopez-Gresa MP, Primo J, Conejero V (2006) Induction of gentisic acid 5-o-ß-d-xylopyranoside in tomato and cucumber plants infected by different pathogens. Phytochemistry 67:142–148

    Article  CAS  PubMed  Google Scholar 

  • Fritzemeier K-H, Cretin C, Kombrink E, Rohwer F, Taylor J, Scheel D, Hahlbrock K (1987) Transient induction of phenylalanine ammonia-lyase and 4-coumarate: CoA ligase mRNAs in potato leaves infected with virulent or avirulent races of Phytophthora infestans. Plant Physiol 85:34–41

    PubMed Central  CAS  PubMed  Google Scholar 

  • Graça J (2010) Hydroxycinnamates in suberin formation. Phytochemistry 9:85–91

    Google Scholar 

  • Grandmaison J, Olah GM, Van Calsteren M-R, Furlan V (1993) Characterization and localization of plant phenolics likely involved in the pathogen resistance expressed by endomycorrhizal roots. Mycorrhiza 3:155–164

    Article  CAS  Google Scholar 

  • Guillet G, De Luca V (2005) Wound-inducible biosynthesis of phytoalexin hydroxycinnamic acid amides of tyramine in tryptophan and tyrosine decarboxylase transgenic tobacco lines. Plant Physiol 137:692–699

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gunnaiah R, Kushalappa AC, Duggavathi R, Fox S, Somers DJ (2012) Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) contributes to resistance against Fusarium graminearum. PLoS One 7:e40695

    Article  Google Scholar 

  • Hagel JM, Facchini PJ (2005) Elevated tyrosine decarboxylase and tyramine hydroxycinnamoyltransferase levels increase woundinduced tyramine-derived hydroxycinnamic acid amide accumulation in transgenic tobacco leaves. Planta 221:904–914

    Article  CAS  PubMed  Google Scholar 

  • Hagemeier J, Schneider B, Oldham NJ, Hahlbrock K (2001) Accumulation of soluble and wall-bound indolic metabolites in arabidopsis thaliana leaves infected with virulent or avirulent pseudomonas syringae pathovar tomato strains. Proc Natl Acad Sci USA 98:753–758

    PubMed Central  CAS  PubMed  Google Scholar 

  • Herrmann K, Nagel CW (1989) Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Crit Rev Food Sci Nutr 28:315–347

    CAS  PubMed  Google Scholar 

  • Hurng WP, Kao CH (1993) Endogenous polyamine levels and floodingenhanced leaf senescence of tobacco. Plant Sci 91:121–125

    CAS  Google Scholar 

  • Iiyama K, Lam TB-T, Stone BA (1994) Covalent cross-links in the cell wall. Plant Physiol 104:315

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ishihara A, Hashimoto Y, Tanaka C, Dubouzet JG, Nakao T, Matsuda F, Nishioka T, Miyagawa H, Wakasa K (2008) The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production. Plant J 54:481–495

    CAS  PubMed  Google Scholar 

  • Jahangir M, Abdel-Farid IB, Kim HK, Choi YH, Verpoorte R (2009) Healthy and unhealthy plants: The effect of stress on the metabolism of Brassicaceae. Environ Exper Bot 67:23–33

    CAS  Google Scholar 

  • Jin S, Yoshida M, Nakajima T, Murai A (2003) Accumulation of hydroxycinnamic acid amides in winter wheat under snow. Biosci Biotechnol Biochem 67:1245–1249

    CAS  PubMed  Google Scholar 

  • Kang K, Park S, Kim YS, Lee S, Back K (2009) Biosynthesis and biotechnological production of serotonin derivatives. Appl Microbiol Biotechnol 83:27–34

    CAS  PubMed  Google Scholar 

  • Kang S, Back K (2006) Enriched production of n-hydroxy- cinnamic acid amides and biogenic amines in pepper (Capsicum annuum) flowers. Sci Hortic 108:337–341

    CAS  Google Scholar 

  • Kim EO, Min KJ, Kwon TK, Um BH, Moreau RA, Choi SW (2012) Anti-inflammatory activity of hydroxycinnamic acid derivatives isolated from corn bran in lipopolysaccharide-stimulated raw 264.7 macrophages. Food Chem Toxicol 50:1309–1316

    CAS  PubMed  Google Scholar 

  • King RR, Calhoun LA (2005) Characterization of cross-linked hydroxycinnamic acid amides isolated from potato common scab lesions. Phytochemistry 66:2468–2473

    Article  CAS  PubMed  Google Scholar 

  • Kushalappa AC, Gunnaiah R (2013) Metabolo-proteomics to discover plant biotic stress resistance genes. Trends Plant Sci 18:522–531

    CAS  PubMed  Google Scholar 

  • Kuznetsov VV, Radyukina N, Shevyakova N (2006) Polyamines and stress: Biological role, metabolism, and regulation. Russ J Plant Physiol 53:583–604

    CAS  Google Scholar 

  • Kwak SY, Seo HS, Lee YS (2009) Synergistic antioxidative activities of hydroxycinnamoyl-peptides. J Peptide Sci 15:634–641

    CAS  Google Scholar 

  • Liu C-J (2010) Biosynthesis of hydroxycinnamate conjugates: Implications for sustainable biomass and biofuel production. Biofuels 1:745–761

    Article  CAS  Google Scholar 

  • Lloyd AJ, William Allwood J, Winder CL, Dunn WB, Heald JK, Cristescu SM, Sivakumaran A, Harren FJ, Mulema J, Denby K (2011) Metabolomic approaches reveal that cell wall modifications play a major role in ethylene — mediated resistance against Botrytis cinerea. Plant J 67:852–868

    CAS  PubMed  Google Scholar 

  • López-Gresa MP, Torres C, Campos L, Lisón P, Rodrigo I, Bellés JM, Conejero V (2011) Identification of defence metabolites in tomato plants infected by the bacterial pathogen Pseudomonas syringae. Environ Exp Bot 74:216–228

    Google Scholar 

  • Luo J, Fuell C, Parr A, Hill L, Bailey P, Elliott K, Fairhurst SA, Martin C, Michael AJ (2009) A novel polyamine acyltransferase responsible for the accumulation of spermidine conjugates in Arabidopsis seed. Plant Cell 21:318–333

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martin-Tanguy J (1997) Conjugated polyamines and reproductive development: Biochemical, molecular and physiological approaches. Physiologia Plantarum 100:675–688

    Article  CAS  Google Scholar 

  • McLusky SR, Bennett MH, Beale MH, Lewis MJ, Gaskin P, Mansfield JW (1999) Cell wall alterations and localized accumulation of feruloyl-3-methoxytyramine in onion epidermis at sites of attempted penetration by botrytis allii are associated with actin polarisation, peroxidase activity and suppression of flavonoid biosynthesis. Plant J 17:523–534

    CAS  Google Scholar 

  • Mueller LA, Goodman CD, Silady RA, Walbot V (2000) An9, a petunia glutathione s-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol 123:1561–1570

    PubMed Central  CAS  PubMed  Google Scholar 

  • Muroi A, Ishihara A, Tanaka C, Ishizuka A, Takabayashi J, Miyoshi H, Nishioka T (2009) Accumulation of hydroxycinnamic acid amides induced by pathogen infection and identification of agmatine coumaroyltransferase in Arabidopsis thaliana. Planta 230:517–527

    Article  CAS  PubMed  Google Scholar 

  • Muroi A, Matsui K, Shimoda T, Kihara H, Ozawa R, Ishihara A, Nishihara M, Arimura G (2012) Acquired immunity of transgenic torenia plants overexpressing agmatine coumaroyltransferase to pathogens and herbivore pests. Sci Rep

    Google Scholar 

  • Negrel J, Pollet B, Lapierre C (1996) Ether-linked ferulic acid amides in natural and wound periderms of potato tuber. Phytochemistry 43:1195–1199

    Article  CAS  Google Scholar 

  • Samborski D, Rohringer R (1970) Abnormal metabolites of wheat: Occurrence, isolation and biogenesis of 2-hydroxypu-trescine amides. Phytochemistry 9:1939–1945

    Article  CAS  Google Scholar 

  • Schmidt A, Grimm R, Schmidt J, Scheel D, Strack D, Rosahl S (1999) Cloning and expression of a potato cdna encoding hydroxycinnamoyl-coa: Tyramine n-(hydroxycinnamoyl) transferase. J Biol Chem 274:4273–4280

    CAS  PubMed  Google Scholar 

  • Schmidt A, Scheel D, Strack D (1998) Elicitor-stimulated biosynthesis of hydroxycinnamoyltyramines in cell suspension cultures of Solanum tuberosum. Planta 205:51–55

    Article  CAS  Google Scholar 

  • Smith TA, Best GR (1978) Distribution of the hordatines in barley. Phytochemistry 17:1093–1098

    Article  CAS  Google Scholar 

  • St-Pierre B, Laflamme P, Alarco AM, Luca E (1998) The terminal oacetyltransferase involved in vindoline biosynthesis defines a new class of proteins responsible for coenzyme a-dependent acyl transfer. Plant J 14:703–713

    CAS  PubMed  Google Scholar 

  • Tamagnone L, Merida A, Stacey N, Plaskitt K, Parr A, Chang C-F, Lynn D, Dow JM, Roberts K, Martin C (1998) Inhibition of phenolic acid metabolism results in precocious cell death and altered cell morphology in leaves of transgenic tobacco plants. Plant Cell 10:1801–1816

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tan J, Bednarek P, Liu J, Schneider B, Svatoš A, Hahlbrock K (2004) Universally occurring phenylpropanoid and species-specific indolic metabolites in infected and uninfected Arabidopsis thaliana roots and leaves. Phytochemistry 65:691–699

    Article  CAS  PubMed  Google Scholar 

  • Ten Chen C, Huei Kao C (1991) Senescence of rice leaves xxix. Ethylene production, polyamine level and polyamine biosynthetic enzyme activity during senescence. Plant Sci 78:193–198

    Google Scholar 

  • Torras-Claveria L, Jáuregui O, Codina C, Tiburcio AF, Bastida J, Viladomat F (2012) Analysis of phenolic compounds by highperformance liquid chromatography coupled to electrospray ionization tandem mass spectrometry in senescent and waterstressed tobacco. Plant Sci 182:71–78

    CAS  PubMed  Google Scholar 

  • Von Roepenack-Lahaye E, Newman MA, Schornack S, et al. (2003) P coumaroylnoradrenaline, a novel plant metabolite implicated in tomato defense against pathogens. J Biol Chem 278:43373–43383

    CAS  PubMed  Google Scholar 

  • Von Roepenack-Lahaye E, Newman MA, Schornack S, Hammond-Kosack KE, Lahaye T, Jones JD, Daniels MJ, Dow JM v (1998) Structural analyses and dynamics of soluble and cell wall-bound phenolics in a broad spectrum resistance to the powdery mildew fungus in barley. J Biol Chem 273:9013–9022

    Google Scholar 

  • Walters DR (2003) Polyamines and plant disease. Phytochemistry 64:97–107

    Article  CAS  PubMed  Google Scholar 

  • Wolski EA, Henriquez MA, Adam LR, Badawi M, Andreu AB, Hadrami AE, Daayf F (2010) Induction of defense genes, secondary metabolites in Saskatoons (Amelanchier alnifolia nutt.) in response to Entomosporium mespili using jasmonic acid and canada milkvetch extracts. Environ Exper Bot 68:273–282

    CAS  Google Scholar 

  • Yogendra KN, Pushpa D, Mosa KA, Kushalappa AC, Murphy A, Mosquera T (2014) Quantitative resistance in potato leaves to late blight associated with induced hydroxycinnamic acid amides. Funct Integr Genomics 14:285–298

    CAS  PubMed  Google Scholar 

  • Yu M, Facchini PJ (2000) Molecular cloning and characterization of a type iii glutathione s-transferase from cell suspension cultures of opium poppy treated with a fungal elicitor. Physiologia Plantarum 108:101–109

    Article  CAS  Google Scholar 

  • Yu XH, Gou JY, Liu CJ (2009) Bahd superfamily of acyl-coa dependent acyltransferases in populus and Arabidopsis: Bioinformatics and gene expression. Plant Mol Biol 70:421–442

    CAS  PubMed  Google Scholar 

  • Zacares L, Lopez-Gresa MP, Fayos J, Primo J, Belles JM, Conejero V (2007) Induction of p-coumaroyldopamine and feruloyldopamine, two novel metabolites, in tomato by the bacterial pathogen Pseudomonas syringae. Mol Plant Microbe Interact 20:1439- 1448

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Gab Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macoy, D.M., Kim, WY., Lee, S.Y. et al. Biotic stress related functions of hydroxycinnamic acid amide in plants. J. Plant Biol. 58, 156–163 (2015). https://doi.org/10.1007/s12374-015-0104-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-015-0104-y

Keywords

Navigation