Skip to main content

Advertisement

Log in

Protein can be taken up by damaged wheat roots and transported to the stem

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Proteins of animal origin can represent a portion of the overall nitrogen (N) pool in the soil environment and there is a possibility that plants may utilize animal proteins as a N source. Using wheat (Triticum aestivum L.) we investigated if the model protein, ovalbumin was taken up into the roots and transported within the plant. In roots, ovalbumin was associated with the epidermis when no root damage was evident, but with minor root damage, it was present in intercellular spaces throughout the cortex and at the endodermis. Ovalbumin was only found in the stem when minor damage to the root system was evident. Suspension cultures of wheat protoplasts revealed that ovalbumin was not assimilated into individual plant cells. Our results suggest that ovalbumin uptake and subsequent movement in wheat is possible only after root damage has occurred. Apoplastic movement may enable animal protein to enter plant tissues above the soil level where they could be consumed by grazers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernstein N, Sela S, Pinto R, Ioffe M (2007) Evidence for internalization of Escherichia coli into the aerial parts of maize via the root system. J Food Prot 70:471–475

    PubMed  Google Scholar 

  • Bradfute OE, McLaren AD (1964) Entry of protein molecules into plant roots. Physiol Plant 17:667–675

    Article  CAS  Google Scholar 

  • Chugh A, Eudes F (2007) Translocation and nuclear accumulation of monomer and dimer of HIV-1 Tat basic domain in triticale mesophyll protoplasts. Biochim Biophys Acta 1768:419–426

    Article  CAS  PubMed  Google Scholar 

  • Chugh A, Eudes F (2008) Cellular uptake of cell-penetrating peptides pVEC and transportan in plants. J Pept Sci 14:477–481

    Article  CAS  PubMed  Google Scholar 

  • Chugh A, Eudes F, Shim YS (2010) Cell-penetrating peptides: Nanocarrier for macromolecule delivery in living cells. IUBMB Life 62:183–193

    Article  CAS  PubMed  Google Scholar 

  • Dietrich D, Hammes U, Thor K, Suter-Grotemeyer M, Fluckiger R, Slusarenko AJ, Ward JM, Rentsch D (2004) AtPTR1, a plasma membrane peptide transporter expressed during seed germination and in vascular tissue of Arabidopsis. Plant J 40:488–499

    Article  CAS  PubMed  Google Scholar 

  • Girin T, El-Kafafiel S, Widiez T, Erban A, Hubberten HM, Kopka J, Hoefgen R, Gojon A, Lepetit M (2010) Identification of Arabidopsis mutants impaired in the systemic regulation of root nitrate uptake by the nitrogen status of the plant. Plant Physiol 153:1250–1260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gorbatsevich E, Sela Saldinger S, Pinto R, Bernstein N (2013) Root internalization, transport and in-planta survival of Salmonella enterica serovar Newport in sweet basil. Environ Microbiol Rep 5:151–159

    Article  CAS  PubMed  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    Article  CAS  PubMed  Google Scholar 

  • Hirner A, Ladwig F, Stransky H, Okumoto S, Keinath M, Harms A, Frommer WB, Koch W (2006) Arabidopsis LHT1 is a highaffinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18:1931–1946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jahn TP, ten Hoopen F, Cuin TA, Pedas P, Hegelund JN, Shabala S, Schjoerring JK (2010) Competition between uptake of ammonium and potassium in barley and Arabidopsis roots: molecular mechanisms and physiological consequences. J Exp Bot 61:2303–2315

    Article  PubMed Central  PubMed  Google Scholar 

  • Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687–696

    Article  CAS  PubMed  Google Scholar 

  • Komarova NY, Thor K, Gubler A, Meier S, Dietrich D, Weichert A, Suter Grotemeyer M, Tegeder M, Rentsch D (2008) AtPTR1 and AtPTR5 transport dipeptides in planta. Plant Physiol 148:856–869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee YH, Foster J, Chen J, Voll LM, Weber AP, Tegeder M (2007) AAP1 transports uncharged amino acids into roots of Arabidopsis. Plant J 50:305–319

    Article  CAS  PubMed  Google Scholar 

  • Ludewig U, von Wiren N, Frommer WB (2002) Uniport of NH4+ by the root hair plasma membrane ammonium transporter LeAMT1;1. J Biol Chem 277:13548–13555

    Article  CAS  PubMed  Google Scholar 

  • McLaren AD, Jensen WA, Jacobson L (1960) Absorption of enzymes and other proteins by barley roots. Plant Physiol 35:549–556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller AJ, Cramer MD (2005) Root nitrogen acquisition and assimilation. Plant Soil 274:1–36

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Neumann PM, Weissman R, Stefano G, Mancuso S (2010) Accumulation of xylem transported protein at pit membranes and associated reductions in hydraulic conductance. J Exp Bot 61:1711–1717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    Article  CAS  PubMed  Google Scholar 

  • Paponov IA, Lebedinskai S, Koshkin EI (1999) Growth analysis of solution culture-grown winter rye, wheat and triticale at different relative rates of nitrogen supply. Ann Bot 84:467–473

    Article  CAS  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Paungfoo-Lonhienne C, Lonhienne TGA, Rentsch D, Robinson N, Christie M, Webb RI, Gamage HK, Carroll BJ, Schenk PM, Schmidt S (2008) Plants can use protein as a nitrogen source without assistance from other organisms. Proc Natl Acad Sci USA 105:4524–4529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paungfoo-Lonhienne C, Rentsch D, Robatzek S, Webb RI, Sagulenko E, Nasholm T, Schmidt S, Lonhienne TGA (2010) Turning the table: Plants consume microbes as a source of nutrients. PLoS ONE 5:e11915

    Article  PubMed Central  PubMed  Google Scholar 

  • Rosenbluh J, Singh SK, Gafni Y, Graessmann A, Loyter A (2004) Non-endocytic penetration of core histones into petunia protoplasts and cultured cells: a novel mechanism for the introduction of macromolecules into plant cells. Biochim Biophys Acta 1664:230–240

    Article  CAS  PubMed  Google Scholar 

  • Seear J, Bradfute OE, Mclaren AD (1968) Uptake of proteins by plant roots. Physiol Plant 21:979–989

    Article  CAS  Google Scholar 

  • Svennerstam H, Ganeteg U, Bellini C, Nasholm T (2007) Comprehensive screening of Arabidopsis mutants suggests the lysine histidine transporter 1 to be involved in plant uptake of amino acids. Plant Physiol 143:1853–1860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka Y, Yano K (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant, Cell Environ 28:1247–1254

    Article  CAS  Google Scholar 

  • Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007) Nitrate transporters and peptide transporters. FEBS lett 581:2290–2300

    Article  CAS  PubMed  Google Scholar 

  • Ulrich JM, McLaren AD (1965) The absorption and translocation of C14-labeled proteins in young tomato plants. Am J Bot 52:120–126

    Article  CAS  PubMed  Google Scholar 

  • van Dam NM (2009) Belowground herbivory and plant defenses. Annu Rev Ecol Evol Systemat 40:373–391

    Article  Google Scholar 

  • Vonk JA, Middelburg JJ, Stapel J, Bouma TJ (2008) Dissolved organic nitrogen uptake by seagrasses. Limnol Oceanogr 53:542–548

    Article  CAS  Google Scholar 

  • Qi X, Droste T, Kao CC (2011) Cell-penetrating peptides derived from viral capsid proteins. Mol Plant-Microbe Interact 24:25–36

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim A. McAllister.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasmussen, J., Gilroyed, B.H., Reuter, T. et al. Protein can be taken up by damaged wheat roots and transported to the stem. J. Plant Biol. 58, 1–7 (2015). https://doi.org/10.1007/s12374-014-0258-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-014-0258-z

Keywords

Navigation