Skip to main content
Log in

A crowd movement model for pedestrian flow through bottlenecks

  • Original Article
  • Published:
Annals of Solid and Structural Mechanics

Abstract

One of the main objectives of crowd modeling is to optimize evacuation and improve the design of pedestrian facilities. In this work, a sensitivity analysis is performed to study the effect of the parameters of a 2D discrete crowd movement model on the nature of pedestrian’s collision and on evacuation times. After presenting the proposed model in its full version (three degrees of freedom for each individual), a pedestrian–pedestrian collision is considered. We identified the parameters that govern this type of collision and studied their effects on it. Then an evacuation experiment of a facility with a bottleneck exit is introduced and its configuration is used for numerical simulations. It is shown that without introducing a social repulsive force, the obtained flow rate values are much higher than the experimental ones. For this reason, we introduced the social force as defined by Helbing and performed a parametric study to find the set of optimized values of this force’s parameters that enables us to achieve simulation results close to the experimental ones. Using the values of the parameters obtained from the parametric study, the evacuation simulations give flow rate values that are closer to the experimental ones. The same optimized model is then used to find the density in front and inside the bottleneck and to reproduce the lane formation phenomenon as was observed in the experiment. Finally, the obtained results are analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Antonini G, Bierlaire M, Weber M (2004), Simulation of pedestrian behavior using a discrete choice model calibrated on actual motion data. In: Proceedings of the 4th STRC Swiss transport research conference, Monte Verita, Ascona, Switzerland

  2. Argoul P, Pécol P, Cumunel G, Erlicher S (2013) A discrete crowd movement model for holding hands pedestrians. In: Proceedings of EUROMECH-Colloquium 548, Amboise, France

  3. Bandini S, Manzoni S, Vizzari G (2004) Situated cellular agents: a model to simulate crowding dynamics. In: IEICE transactions on information and systems: special issues on cellular automata E87-D, pp 669–676

  4. Blue V, Adler J (1998) Emergent fundamental pedestrian flows from cellular automata microsimulation. Transp Res Rec J Transp Res Board 1644:29–36

    Article  Google Scholar 

  5. Bruns H (1895) Das Eikonal. Leipzig Abh Sachs Ges Wiss Math Phys 21:321–436

    MATH  Google Scholar 

  6. Burstedde C, Klauck K, Schadschneider A, Zittartz J (2001) Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Phys A 295(3):507–525

    Article  MATH  Google Scholar 

  7. Caselli F, Frémond M (2008) Collision of three balls on a plane. Comput Mech 43(6):743–754

    Article  MathSciNet  MATH  Google Scholar 

  8. Cholet C (1999) Collision d’un point et d’un plan. C R Acad Sci 328:455–458

    Article  MathSciNet  MATH  Google Scholar 

  9. Chraibi M, Seyfried A, Schadschneider A (2010) Generalized centrifugal-force model for pedestrian dynamics. Phys Rev E 82(4):046111

    Article  Google Scholar 

  10. Dimnet E (2002) Mouvement et collisions de solides rigides ou déformables. PhD thesis, Ecole Nationale des Ponts et Chaussées

  11. Dal Pont S, Dimnet E (2008) Theoretical approach to instantaneous collisions and numerical simulation of granular media using the A-CD\(^{2}\) method. Commun Appl Math Comput Sci 3(1):1–24

    Article  MathSciNet  MATH  Google Scholar 

  12. Frémond M (1995) Rigid bodies collisions. Phys Lett A 204:33–41

    Article  MathSciNet  MATH  Google Scholar 

  13. Frémond M (2007) Collisions. Edizioni del Dipartimento di Ingegneria Civile dell’ Università di Roma Tor Vergata

  14. Fukui M, Ishibashi Y (1999) Jamming transition in cellular automaton models for pedestrians on passageway. J Phys Soc Jpn 68(11):3738–3739

    Article  Google Scholar 

  15. Gopal S, Smith TR (1990) Human way-finding in an urban environment: a performance analysis of a computational process model. Environ Plan A 22(2):169–191

    Article  Google Scholar 

  16. Helbing D, Molnàr P (1995) Social force model for pedestrian dynamics. Phys Rev E 51(5):4282–4286

    Article  Google Scholar 

  17. Helbing D, Farkas I, Vicsek T (2000) Simulating dynamic features of escape panic. Nature 407:487–490

    Article  Google Scholar 

  18. Henderson L (1971) The statistics of crowd fluids. Nature 229:381–383

    Article  Google Scholar 

  19. Hoogendoorn S, Bovy P, Daamen W (2001) Microscopic pedestrian wayfinding and dynamics modeling. In: Schreckenberg M, Sharma S (eds) Pedestrian and evacuation dynamics. Springer, Berlin, pp 123–154

    Google Scholar 

  20. Hoogendoorn SP, Daamen W (2005) Pedestrian behavior at bottlenecks. Transp Sci 39(2):147–159

    Article  Google Scholar 

  21. Jeong W.K., Whitaker R. (2007), A fast eikonal equation solver for parallel systems. In: SIAM conference on computational science and engineering

  22. Kimmel R, Sethian J (1996) Fast marching methods for computing distance maps and shortest paths. Technical report 669. University of California, Berkeley, CPAM

  23. Kirchner A, Schadschneider A (2002) Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Phys A 312(12):260–276

    Article  MATH  Google Scholar 

  24. Kretz T, Grunebohm A, Schreckenberg M (2006) Experimental study of pedestrian flow through a bottleneck. J Stat Mech Theory Exp 10:P10014. doi:10.1088/1742-5468/2006/10/P10014

    Article  Google Scholar 

  25. Lakoba TI, Kaup DJ, Finkelstein NM (2005) Modification of the Helbing–Molnar–Farkas–Vicsek social force model for pedestrian evolution. Simulation 81:339–352

    Article  Google Scholar 

  26. Langston PA, Masling R, Asmar BN (2006) Crowd dynamics discrete element multi-circle model. Saf Sci 44:395–417

    Article  Google Scholar 

  27. Löhner R (2010) On the modeling of pedestrian motion. Appl Math Model 34(2):366–382

    Article  MathSciNet  MATH  Google Scholar 

  28. Moreau J (1970) Sur les lois du frottement, de la viscosité et de la plasticité. C R Acad Sci 271:608–611

    Google Scholar 

  29. Moussaïd M, Perozo N, Garnier S, Helbing D, Theraulaz G (2010) The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE 5(4):e10047. doi:10.1371/journal.pone.0010047

    Article  Google Scholar 

  30. Pécol P, Dal Pont S, Erlicher S, Argoul P (2010) Modeling crowd-structure interaction. Mec Ind EDP Sci 11(6):495–504

    MATH  Google Scholar 

  31. Pécol P (2011) Modélisation 2D discrète du mouvement des piétons—application à l’évacuation des structures du génie civil et à l’interaction foule-passerelle. Dissertation, Université Paris Est

  32. Pécol P, Dal Pont S, Erlicher S, Argoul P (2011) Smooth/non-smooth contact modeling of human crowds movement: numerical aspects and application to emergency evacuations. Ann Solid Struct Mech 2(2–4):69–85

    Article  Google Scholar 

  33. Pécol P, Argoul P, Dal Pont S, Erlicher S (2013) The non-smooth view for contact dynamics by Michel Frémond extended to the modeling of crowd movements. AIMS’ J Discret Contin Dyn Syst Ser S(2):547–565

  34. Reynolds CW (1994) Evolution of corridor following behavior in a noisy world. From Anim Animat 3:402–410

    Google Scholar 

  35. Seyfried A, Rupprecht T, Passon O, Steffen B, Klingsch W, Boltes M (2009) New insights into pedestrian flow through bottlenecks. Transp Sci 43(3):395–406

    Article  Google Scholar 

  36. Singh H, Arter R, Dodd L, Drury J (2009) Modeling subgroup behavior in crowd dynamics DEM simulation. Appl Math Model 33:4408–4423

    Article  MATH  Google Scholar 

  37. Song W, Lv W, Fang Z (2013) Experiment and modeling of microscopic movement characteristic of pedestrians. Proc Eng 62:56–70

    Article  Google Scholar 

  38. Yu WJ, Chen R, Dong LY, Dai SQ (2005) Centrifugal force model for pedestrian dynamics. Phys Rev E 72(2):026112

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bachar Kabalan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabalan, B., Argoul, P., Jebrane, A. et al. A crowd movement model for pedestrian flow through bottlenecks. Ann. Solid Struct. Mech. 8, 1–15 (2016). https://doi.org/10.1007/s12356-016-0044-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12356-016-0044-3

Keywords

Navigation