Skip to main content
Log in

Sustainable Production and Comparative Liquid Phase Exfoliation of Onion Peel-Doped Sugarcane Bagasse Hybrid Biochar

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Liquid-phase exfoliation offers a promising avenue for enhancing biochar properties and applications, addressing the scalability and cost concerns prevalent in alternative methods. A pivotal step in enriching sugarcane bagasse composition with both organic and elemental components involves the incorporation of onion peel, significantly expanding its potential applications in biochar production. This study focuses on producing hybrid biochar by blending sugarcane bagasse and chicken feathers, followed by liquid-phase exfoliation via two routes: acid and acetone. Elemental analysis revealed enrichment in the hybrid biochar due to the combined feedstocks. Nitric acid exfoliation increased oxygen and nitrogen content, while acetone preserved carbon content. Textural analysis showed substantial surface area enhancements in exfoliated samples (970.2 m2/g for acid and 903.1 m2/g for acetone, compared to 471.3 m2/g for hybrid biochar). Acetone exfoliation notably increased total pore volume. Microscopic surface investigation revealed layered, expanded structures in exfoliated biochar samples. The functional group analysis of the hybrid biochar revealed a diverse array of functional groups derived from both feedstocks, enhancing its potential versatility. Exfoliation induced significant chemical changes and peak shifts. This study underscores feedstock composition and exfoliation methods' roles in sustainable, high-quality biochar production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adeniyi, A.G., S.A. Abdulkareem, J.O. Ighalo, D.V. Onifade, and S.K. Sanusi. 2021. Thermochemical co-conversion of sugarcane bagasse-LDPE hybrid waste into biochar. Arabian Journal for Science and Engineering 46 (7): 6391–6397. https://doi.org/10.1007/s13369-020-05119-9.

    Article  CAS  Google Scholar 

  • Adeniyi, A.G., V.T. Amusa, E.C. Emenike, and K.O. Iwuozor. 2022a. Co-carbonization of waste biomass with expanded polystyrene for enhanced biochar production. Biofuels 14 (6): 635–643. https://doi.org/10.1080/17597269.2022.2161133.

    Article  CAS  Google Scholar 

  • Adeniyi, A.G., V.T. Amusa, K.O. Iwuozor, and E.C. Emenike. 2022b. Thermal recycling strategy of Coca-Cola PVC label films by its co-carbonization with Terminalia ivorensis leaves. Cleaner Engineering and Technology 11: 100564. https://doi.org/10.1016/j.clet.2022.100564.

    Article  Google Scholar 

  • Adeniyi, A.G., K.O. Iwuozor, E.C. Emenike, S. Ogunniyi, M.A. Amoloye, and P.A. Sagboye. 2022c. One-step chemical activation for the production of engineered orange peel biochar. Emergent Materials 6: 211–221. https://doi.org/10.1007/s42247-022-00442-3.

    Article  CAS  Google Scholar 

  • Adeniyi, G.A., S.A. Abdulkareem, C.A. Adeyanju, K.O. Iwuozor, S. Ogunniyi, K.Y. Kawu, and E.C. Emenike. 2022d. Recovery of metallic oxide rich biochar from waste chicken feather. Low-Carbon Materials and Green Construction 1: 1–7. https://doi.org/10.1007/s44242-022-00002-2.

    Article  Google Scholar 

  • Adeniyi, A.G., S.A. Abdulkareem, C.A. Adeyanju, M.T. Abdulkareem, K.O. Iwuozor, E.C. Emenike, and M. Ndagi. 2023a. Mechanical and morphological analyses of flamboyant seed pod biochar/aluminium filings reinforced hybrid polystyrene composite. Journal of the Indian Academy of Wood Science 20: 28–36. https://doi.org/10.1007/s13196-023-00311-4.

    Article  Google Scholar 

  • Adeniyi, A.G., S.A. Abdulkareem, K.P. Odimayomi, K.O. Iwuozor, and E.C. Emenike. 2023b. Microstructural and thermal properties of thermally cured calcined cow bone/kaolin filled hybrid polystyrene composites. Asia-Pacific Journal of Chemical Engineering 18 (3): e2898. https://doi.org/10.1002/apj.2898.

    Article  CAS  Google Scholar 

  • Adeniyi, A.G., V.T. Amusa, E.C. Emenike, and K.O. Iwuozor. 2023c. Hybrid biochar production from biomass and pigmented plastic for sustainable waste-to-energy. Emergent Materials 6: 1481–1490. https://doi.org/10.1007/s42247-023-00538-4.

    Article  CAS  Google Scholar 

  • Adeniyi, A.G., K.O. Iwuozor, J. Adeleke, E.C. Emenike, K.T. Micheal, and J.O. Ighalo. 2023d. Production and characterization of neem leaves biochar: Effect of two different retort carbonization systems. Bioresource Technology Reports 24: 101597. https://doi.org/10.1016/j.biteb.2023.101597.

    Article  CAS  Google Scholar 

  • Adeniyi, A.G., K.O. Iwuozor, E.C. Emenike, O.J. Ajala, S. Ogunniyi, and K.B. Muritala. 2023f. Thermochemical co-conversion of biomass-plastic waste to biochar: A review. Green Chemical Engineering in Press. https://doi.org/10.1016/j.gce.2023.03.002.

    Article  Google Scholar 

  • Adeniyi, A.G., K.O. Iwuozor, A.O. Ezzat, K.B. Muritala, E.C. Emenike, and I.P. Oyekunle. 2023g. Unlocking the potential of teak seed waste: Carbonization for sustainable resource transformation. Biofuels, Bioproducts and Biorefining in Press. https://doi.org/10.1002/bbb.2572.

    Article  Google Scholar 

  • Adeniyi, A.G., K.O. Iwuozor, K.B. Muritala, E.C. Emenike, and J.A. Adeleke. 2023h. Conversion of biomass to biochar using top-lit updraft technology: A review. Biofuels, Bioproducts and Biorefining 17 (5): 1411–1424. https://doi.org/10.1002/bbb.2497.

    Article  CAS  Google Scholar 

  • Adeniyi, A.G., K.O. Iwuozor, E.C. Emenike, C. Adeyanju, and S. Ogunniyi. 2023e. Mechanical and Microstructural Properties of Bio-composite Produced from Recycled Polystyrene/chicken Feather Biochar. Journal of Renewable Energy and Environment (in press). https://doi.org/10.30501/jree.2023.384691.1553.

  • Backes, C., T.M. Higgins, A. Kelly, C. Boland, A. Harvey, D. Hanlon, and J.N. Coleman. 2017. Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation. Chemistry of Materials 29 (1): 243–255.

    Article  CAS  Google Scholar 

  • Bains, A., K. Sridhar, B.N. Singh, R.C. Kuhad, P. Chawla, and M. Sharma. 2023. Valorization of onion peel waste: From trash to treasure. Chemosphere 343: 140178. https://doi.org/10.1016/j.chemosphere.2023.140178.

    Article  CAS  PubMed  Google Scholar 

  • Behera, B., B. Dey, and P. Balasubramanian. 2020. Algal biodiesel production with engineered biochar as a heterogeneous solid acid catalyst. Bioresource Technology 310: 123392.

    Article  CAS  PubMed  Google Scholar 

  • Bukhari, Q.U.A., F. Silveri, F. Della Pelle, A. Scroccarello, D. Zappi, E. Cozzoni, and D. Compagnone. 2021. Water-phase exfoliated biochar nanofibers from eucalyptus scraps for electrode modification and conductive film fabrication. ACS Sustainable Chemistry & Engineering 9 (41): 13988–13998.

    Article  CAS  Google Scholar 

  • Celano, R., T. Docimo, A.L. Piccinelli, P. Gazzerro, M. Tucci, R. Di Sanzo, S. Carabetta, L. Campone, M. Russo, and L. Rastrelli. 2021. Onion peel: Turning a food waste into a resource. Antioxidants 10 (2): 304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chadorshabi, S., S. Hallaj-Nezhadi, and Z. Ghasempour. 2022. Red onion skin active ingredients, extraction and biological properties for functional food applications. Food Chemistry 386: 132737.

    Article  CAS  PubMed  Google Scholar 

  • Danesh, P., P. Niaparast, P. Ghorbannezhad, and I. Ali. 2022. Biochar production: Recent developments, applications, and challenges. Fuel 337: 126889. https://doi.org/10.1016/j.fuel.2022.126889.

    Article  CAS  Google Scholar 

  • Emenike, E.C., K.O. Iwuozor, S.A. Agbana, K.S. Otoikhian, and A.G. Adeniyi. 2022. Efficient recycling of disposable face masks via co-carbonization with waste biomass: A pathway to a cleaner environment. Cleaner Environmental Systems 6: 100094. https://doi.org/10.1016/j.cesys.2022.100094.

    Article  Google Scholar 

  • Emenike, E.C., V.T. Amusa, K.O. Iwuozor, T. Ojeyemi, T.T. Micheal, K.T. Micheal, and A.G. Adeniyi. 2023a. Enhancing biochar properties through doping: A comparative study of sugarcane bagasse and chicken feather. Biofuels in Press. https://doi.org/10.1080/17597269.2023.2274694.

    Article  Google Scholar 

  • Emenike, E.C., K.O. Iwuozor, J.O. Ighalo, J.O. Bamigbola, E.O. Omonayin, H.T. Ojo, J. Adeleke, and A.G. Adeniyi. 2023b. Advancing the circular economy through the thermochemical conversion of waste to biochar: A review on sawdust waste-derived fuel. Biofuels in Press. https://doi.org/10.1080/17597269.2023.2255007.

    Article  Google Scholar 

  • Emenike, E.C., K.O. Iwuozor, K.C. Okwu, A.H. Qudus, A.U. Egbemhenghe, and A.G. Adeniyi. 2023c. Composition and morphology of biomass-based soot from updraft gasifier system. Journal of Renewable and Sustainable Energy 15 (4): 043101. https://doi.org/10.1063/5.0154780.

    Article  CAS  Google Scholar 

  • Emenike, E.C., K.P. Odimayomi, K.O. Iwuozor, M. Ndagi, and A.G. Adeniyi. 2023d. Synthesis of activated carbon monolith from lignocellulosic material: Evaluation of product quality. MRS Advances 8: 816–822. https://doi.org/10.1557/s43580-023-00584-4.

    Article  CAS  Google Scholar 

  • Haghighatjou, M., and M. Shirvani. 2020. Sugarcane bagasse biochar: Preparation, characterization, and its effects on soil properties and zinc sorption-desorption. Communications in Soil Science and Plant Analysis 51 (10): 1391–1405.

    Article  CAS  Google Scholar 

  • Haghighi, M.S., M.R. Pelaez-Samaniego, and M. Garcia-Perez. 2022. Perspectives of engineered biochar for environmental applications: A review. Energy & Fuels 36 (15): 7940–7986.

    Article  Google Scholar 

  • Ighalo, J.O., K.O. Iwuozor, C.A. Igwegbe, and A.G. Adeniyi. 2021. Verification of pore size effect on aqueous-phase adsorption kinetics: A case study of methylene blue. Colloids and Surfaces a: Physicochemical and Engineering Aspects 626: 127119. https://doi.org/10.1016/j.colsurfa.2021.127119.

    Article  CAS  Google Scholar 

  • Iwuozor, K.O., J.O. Ighalo, E.C. Emenike, C.A. Igwegbe, and A.G. Adeniyi. 2021. Do adsorbent pore size and specific surface area affect the kinetics of methyl orange aqueous phase adsorption? Journal of Chemistry Letters 2 (4): 188–198. https://doi.org/10.22034/jchemlett.2022.327407.1048.

    Article  Google Scholar 

  • Iwuozor, K.O., E.C. Emenike, J.O. Ighalo, S. Eshiemogie, P.E. Omuku, and A.G. Adeniyi. 2022a. Valorization of sugar industry’s by-products: A perspective. Sugar Tech 24: 1052–1078. https://doi.org/10.1007/s12355-022-01143-1.

    Article  Google Scholar 

  • Iwuozor, K.O., E.C. Emenike, J.O. Ighalo, F.O. Omoarukhe, P.E. Omuku, and A.G. Adeniyi. 2022b. A review on the thermochemical conversion of sugarcane bagasse into biochar. Cleaner Materials 6: 100162. https://doi.org/10.1016/j.clema.2022.100162.

    Article  CAS  Google Scholar 

  • Iwuozor, K.O., L.A. Ogunfowora, and I.P. Oyekunle. 2022c. Review on sugarcane-mediated nanoparticle synthesis: A green approach. Sugar Tech 24: 1186–1197. https://doi.org/10.1007/s12355-021-01038-7.

    Article  CAS  Google Scholar 

  • Iwuozor, K.O., I.P. Oyekunle, I.O. Oladunjoye, E.M. Ibitogbe, and T.S. Olorunfemi. 2022d. A review on the mitigation of heavy metals from aqueous solution using sugarcane bagasse. Sugar Tech 24: 1167–1185. https://doi.org/10.1007/s12355-021-01051-w.

    Article  CAS  Google Scholar 

  • Iwuozor, K.O., A.G. Adeniyi, E.C. Emenike, T. Ojeyemi, A.U. Egbemhenghe, C.J. Okorie, B.D. Ayoku, and O.D. Saliu. 2023a. Prospects and challenges of utilizing sugarcane bagasse as a bio-coagulant precursor for water treatment. Biotechnology Reports 39: e00805. https://doi.org/10.1016/j.btre.2023.e00805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwuozor, K.O., E.C. Emenike, M. Abdulkadir, S. Ogunniyi, and A.G. Adeniyi. 2023b. Effect of salt modification on biochar obtained from the thermochemical conversion of sugarcane bagasse. Sugar Tech 25: 223–233. https://doi.org/10.1007/s12355-022-01166-8.

    Article  CAS  Google Scholar 

  • Iwuozor, K.O., E.C. Emenike, J. Adeleke, T.T. Micheal, S. Ogunniyi, and A.G. Adeniyi. 2023c. Comparative assessment of biochar produced from LDPE and neem leaves using batch and semi-batch biomass fuel-based reactors. Biofuels in Press. https://doi.org/10.1080/17597269.2023.2281099.

    Article  Google Scholar 

  • Iwuozor, K.O., E.C. Emenike, E.O. Omonayin, J.O. Bamigbola, H.T. Ojo, A.A. Awoyale, O.A. Eletta, and A.G. Adeniyi. 2023d. Unlocking the hidden value of pods: A review of thermochemical conversion processes for biochar production. Bioresource Technology Reports 22: 101488. https://doi.org/10.1016/j.biteb.2023.101488.

    Article  CAS  Google Scholar 

  • Iwuozor, K.O., E.C. Emenike, A.A. Stephen, O.S. Kevin, J. Adeleke, and A.G. Adeniyi. 2023e. Thermochemical recycling of waste disposable facemasks in a non-electrically powered system. Low-Carbon Materials and Green Construction 1 (1): 1–11. https://doi.org/10.1007/s44242-023-00010-w.

    Article  Google Scholar 

  • Iwuozor, K.O., K.P. Odimayomi, E.C. Emenike, M. Ndagi, and A.G. Adeniyi. 2023f. Synthesis and characterization of activated carbon monolith from African locust bean pods and polystyrene resin. Materials Research Innovations (in press). https://doi.org/10.1080/14328917.2023.2247725.

  • Liu, Y., Z. He, and M. Uchimiya. 2015. Comparison of biochar formation from various agricultural by-products using FTIR spectroscopy. Modern Applied Science 9 (4): 246.

    Article  CAS  Google Scholar 

  • Moradi-Choghamarani, F., A.A. Moosavi, and M. Baghernejad. 2019. Determining organo-chemical composition of sugarcane bagasse-derived biochar as a function of pyrolysis temperature using proximate and Fourier transform infrared analyses. Journal of Thermal Analysis and Calorimetry 138 (1): 331–342.

    Article  CAS  Google Scholar 

  • Nicolosi, V., M. Chhowalla, M.G. Kanatzidis, M.S. Strano, and J.N. Coleman. 2013. Liquid exfoliation of layered materials. Science 340 (6139): 1226419.

    Article  Google Scholar 

  • Odeyemi, S.O., K.O. Iwuozor, E.C. Emenike, O.T. Odeyemi, and A.G. Adeniyi. 2023. Valorization of waste cassava peel into biochar: An alternative to electrically-powered process. Total Environment Research Themes 6: 100029. https://doi.org/10.1016/j.totert.2023.100029.

    Article  Google Scholar 

  • Piersa, P., H. Unyay, S. Szufa, W. Lewandowska, R. Modrzewski, R. Ślężak, and S. Ledakowicz. 2022. An extensive review and comparison of modern biomass torrefaction reactors vs. biomass pyrolysis—Part 1. Energies 15 (6): 2227.

    Article  CAS  Google Scholar 

  • Saliu, O., A. Adeniyi, M. Mamo, P. Ndungu, and J. Ramontja. 2022. Microwave exfoliation of a biochar obtained from updraft retort carbonization for supercapacitor fabrication. Electrochemistry Communications 139: 107308.

    Article  CAS  Google Scholar 

  • Shafawi, A.N., P. Lahijani, M. Mohammadi, and A.R. Mohamed. 2022. An investigation on sequential ultrasonication and metal modification of biochar on its CO2 capture performance. Biomass Conversion and Biorefinery in Press. https://doi.org/10.1007/s13399-022-03658-9.

    Article  Google Scholar 

  • Stoica, F., R.N. Rațu, I.D. Veleșcu, N. Stănciuc, and G. Râpeanu. 2023. A comprehensive review on bioactive compounds, health benefits, and potential food applications of onion (Allium cepa L.) skin waste. Trends in Food Science & Technology 141: 104173. https://doi.org/10.1016/j.tifs.2023.104173.

    Article  CAS  Google Scholar 

  • Tian, W., Q. Gao, A. VahidMohammadi, J. Dang, Z. Li, X. Liang, M.M. Hamedi, and L. Zhang. 2021. Liquid-phase exfoliation of layered biochars into multifunctional heteroatom (Fe, N, S) co-doped graphene-like carbon nanosheets. Chemical Engineering Journal 420: 127601.

    Article  CAS  Google Scholar 

  • Vidal, J.L., V.P. Andrea, S.L. MacQuarrie, and F.M. Kerton. 2019. Oxidized biochar as a simple, renewable catalyst for the production of cyclic carbonates from carbon dioxide and epoxides. ChemCatChem 11 (16): 4089–4095.

    Article  CAS  Google Scholar 

  • Vidal, J.L., S.M. Gallant, E.P. Connors, D.D. Richards, S.L. MacQuarrie, and F.M. Kerton. 2021. Green solvents for the liquid-phase exfoliation of biochars. ACS Sustainable Chemistry & Engineering 9 (27): 9114–9125.

    Article  CAS  Google Scholar 

  • Yakout, S.M., A.E.H.M. Daifullah, and S.A. El-Reefy. 2015. Pore structure characterization of chemically modified biochar derived from rice straw. Environmental Engineering & Management Journal 14 (2): 473–480.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support through Researchers Supporting Project number (RSPD2024R768), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kingsley O. Iwuozor or Adewale George Adeniyi.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Ethical Approval

This article does not contain any studies involving human or animal subjects.

Consent to Participate

Not applicable.

Consent for Publication

The authors have unanimously decided that this manuscript be sent for possible publication.

Consent to Publish.

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwuozor, K.O., Amoloye, M.A., Owolabi, O.O. et al. Sustainable Production and Comparative Liquid Phase Exfoliation of Onion Peel-Doped Sugarcane Bagasse Hybrid Biochar. Sugar Tech 26, 502–512 (2024). https://doi.org/10.1007/s12355-024-01367-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-024-01367-3

Keywords

Navigation