Skip to main content
Log in

Cold Tolerance in Sugarcane Progenies Under Natural Stress

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Cold stress reduces crop yields and quality, limiting agricultural expansion. The objective of this study was to evaluate cold tolerance in sugarcane (Saccharum spp.) progenies based on physiological and biometric characteristics under natural cold stress. The experiment was carried out at a station of the Temperate Climate Research Center, of the Brazilian Agricultural Research Corporation (Embrapa), in Pelotas, Rio Grande do Sul, where 21 full-sib sugarcane progenies were evaluated in an incomplete block design with six replications. Physiological and biometric characteristics were measured after frost events to determine cold tolerance. The components of variance, genetic parameters and correlations were estimated using mixed models (REML/BLUP). The meteorological data recorded on-site showed the occurrence of 13 frost events (0 °C) and a minimum temperature of − 2.9 °C. Genetic variability for cold tolerance was detected between and within progenies. Narrow-sense heritability was moderate for chlorophyll content (0.23), leaf damage (0.26), stalk damage (0.19) and total soluble solids content (0.44), while heritability at the progeny level was high for all traits (> 0.57). The genotypic values for cold tolerance and yield potential were highest in the progenies RB996962 × RB016916, RB016916 × RB996962, RB867515 × RB92579 and RB106802 × RB036088.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barbosa, M.H.P., M.D.V. Resende, L.A.D.S. Dias, G.V.D.S. Barbosa, R.A.D. Oliveira, L.A. Peternelli, and E. Daros. 2012. Genetic improvement of sugar cane for bioenergy: The Brazilian experience in network research with RIDESA. Crop Breeding and Applied Biotechnology 12: 87–98.

    Article  Google Scholar 

  • Barbosa, M.H.P., A. Ferreira, M.D.V. Resende, M. Nascimento, and F. Silva. 2014. Selection of sugar cane families by using BLUP and multi-diverse analyses for planting in the Brazilian savannah. Genetics and Molecular Research 13: 1619–1626.

    Article  CAS  Google Scholar 

  • Brinholi, O. 1972. Resistência ao frio de diferentes cultivares de cana-de-açúcar (Saccharum spp.). São Paulo: Tese de Doutorado em Agronomia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo.

    Google Scholar 

  • Castro, R.D., L.A. Peternelli, M.D.V.D. Resende, C.D. Marinho, P.M.A. Costa, M.H.P. Barbosa, and E.F.A. Moreira. 2016. Selection between and within full-sib sugarcane families using the modified BLUPIS method (BLUPISM). Genetics and Molecular Research 15: 1.

    Google Scholar 

  • Chang, Y.S., and S.B. Milligan. 1992. Estimating the potential of sugarcane families to produce elite genotypes using univariate cross prediction methods. Theoretical and Applied Genetics 84: 662–671.

    Article  CAS  Google Scholar 

  • Edmé, S.J., and B.S. Glaz. 2013. Field response of sugarcane genotypes to freeze stress with genotype x environment effects on quality traits. Journal of Crop Improvement 27: 1–30.

    Article  Google Scholar 

  • Eggleston, G., B. Legendre, and T. Tew. 2004. Indicators of freeze-damaged sugarcane varieties which can predict processing problems. Food Chemistry 87: 119–133.

    Article  CAS  Google Scholar 

  • Eremina, M., W. Rozhon, and B. Poppenberger. 2016. Hormonal control of cold stress responses in plants. Cellular and Molecular Life Sciences 73: 797–810.

    Article  CAS  Google Scholar 

  • Espósito, D.P., L.A. Peternelli, T.O.M.D. Paula, and M.H.P. Barbosa. 2012. Análise de trilha usando valores fenotípicos e genotípicos para componentes do rendimento na seleção de famílias de cana-de-açúcar. Ciência Rural 42: 38–44.

    Article  Google Scholar 

  • Fürtauer, L., J. Weiszmann, W. Weckwerth, and T. Nägele. 2019. Dynamics of plant metabolism during cold acclimation. International Journal of Molecular Sciences 20: 5411.

    Article  Google Scholar 

  • Gilliham, M., J.A. Able, and S.J. Roy. 2017. Translating knowledge about abiotic stress tolerance to breeding programmes. The Plant Journal 90: 898–917.

    Article  CAS  Google Scholar 

  • Hale, A.L., R.P. Viator, G. Eggleston, G. Hodnett, D.M. Stelly, D. Boykin, and D.K. Miller. 2016. Estimating broad sense heritability and investigating the mechanism of genetic transmission of cold tolerance using mannitol as a measure of post-freeze juice degradation in sugarcane and energycane (Saccharum spp.). Journal of Agricultural and Food Chemistry 64: 1657–1663.

    Article  CAS  Google Scholar 

  • Legendre, B., T. Tew, A. Hale, H. Birkett, G. Eggleston, M. Duet, and J. Stein. 2011. Stalk cold tolerance of commercial and candidate varieties during the 2010–2011 harvest season. Journal American Society of Sugar Cane Technologists 31: 148–156.

    Google Scholar 

  • Li, S.L., Z.H. Li, L.T. Yang, Y.R. Li, and Z.L. He. 2018. Differential effects of cold stress on chloroplasts structures and photosynthetic characteristics in cold-sensitive and cold-tolerant cultivars of sugarcane. Sugar Tech 20: 11–20.

    Article  CAS  Google Scholar 

  • Lu, S., X. Wang, and Z. Guo. 2013. Differential responses to chilling in Stylosanthes guianensis (Aublet) Sw. and its mutants. Agronomy Journal 105: 377–382.

    Article  CAS  Google Scholar 

  • Moraes, C.B., E.V. Tambarussi, L. Gama, F.M. Abilio, A. Carignato, L. Zimback, R.C. Paula, and E. Mori. 2016. Controle genético para a tolerância a geada em progênies de Eucalyptus urophylla. Scientia Forestalis 44: 373–381.

    Article  Google Scholar 

  • Oliveira, R.A., E. Daros, M.D.V. Resende, J.C. Bespalhok Filho, J.L.C. Zambon, and L. Ruaro. 2013. Early selection in sugarcane family trials via BLUP and BLUPIS procedures. Acta Scientiarum 35: 427–434.

    Google Scholar 

  • Oliveira, R.A., A.S.F. Lucius, E. Daros, J.C. Bespalhok, J.L.C. Zambon, H. Weber, and M.A.A. Verissimo. 2016. Performance of sugarcane families at different stages of a selection program. International Sugar Journal 16: 378–381.

    Google Scholar 

  • Piepho, H., and J. Möhring. 2011. On estimation of genotypic correlations and their standard errors by multivariate REML using the MIXED procedure of the SAS systalk. Crop Science 51: 2449–2454.

    Article  Google Scholar 

  • R Development Core Team. 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org. Acessed 10 Mach 2020.

  • Rasheed, R., A. Wahid, M. Ashraf, and S.M.A. Basra. 2010. Role of proline and glycinebetaine in improving chilling stress tolerance in sugarcane buds at sprouting. International Journal of Agriculture and Biology 12: 1–8.

    CAS  Google Scholar 

  • Resende, M.D.V. 2002. Genética biométrica e estatística no melhoramento de plantas perenes. Brasília, DF, Brasil: Embrapa Informação Tecnológica.

    Google Scholar 

  • Resende, M.D.V. 2016. Software selegen-REML/BLUP: A useful tool for plant breeding. Crop Breeding and Applied Biotechnology 16: 330–339.

    Article  Google Scholar 

  • Resende, M.D.V., and M.H.P. Barbosa. 2006. Selection via simulated individual BLUP based on family genotypic effects in sugarcane. Pesquisa Agropecuária Brasileira 41: 421–429.

    Article  Google Scholar 

  • Resende, M.D.V., and J.B. Duarte. 2007. Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesquisa Agropecuária Tropical 37: 182–194.

    Google Scholar 

  • Shi, Y., Y. Ding, and S. Yang. 2018. Molecular regulation of CBF signaling in cold acclimation. Trends in Plant Science 23: 623–637.

    Article  CAS  Google Scholar 

  • Silva, F.L.D., M.H.P. Barbosa, M.D.V. Resende, L.A. Peternelli, and C.A. Pedrozo. 2015. Efficiency of selection within sugarcane families via simulated individual BLUP. Crop Breeding and Applied Biotechnology 15: 1–9.

    Article  Google Scholar 

  • Silveira, L.C.I., B.P. Brasileiro, V. Kist, H. Weber, E. Daros, L.A. Peternelli, and M.H.P. Barbosa. 2016. Selection in energy cane families. Crop Breeding and Applied Biotechnology 16: 298–306.

    Article  Google Scholar 

  • Singh, R., T. Jones, C.M. Wai, J. Jifon, C. Nagai, R. Ming, and Q. Yu. 2018. Transcriptomic analysis of transgressive segregants revealed the central role of photosynthetic capacity and efficiency in biomass accumulation in sugarcane. Scientific Reports 8: 4415.

    Article  Google Scholar 

  • Taiyun, W., and V. Simko. 2017. R package "corrplot": Visualization of a correlation matrix (version 0.84). https://github.com/taiyun/corrplot. Acessed 15 Mach 2020.

  • Tang, S.Y., Y.R. Li, and L.T. Yang. 2015. Evaluation of cold tolerance and photosynthetic characteristics in different sugarcane genotypes. Journal of Global Biosciences 4: 2459–2467.

    Google Scholar 

  • Tena, E., F. Mekbib, and A. Ayana. 2016. Heritability and correlation among sugarcane (Saccharum spp.) yield and some agronomic and sugar quality traits in Ethiopia. American Journal of Plant Sciences 7: 1453–1477.

    Article  CAS  Google Scholar 

  • Van Heerden, P.D.R., T. Van Antwerpen, S. Ramburan, K.A. Redshaw, S.J. Snyman, T.M. Webster, S.D. Berry, G.W. Maher, and R.S. Rutherford. 2009. Rapid bulking and testing of cold tolerant varieties imported from Louisiana. Proceedings of the South African Sugar Technologists Association 82: 422–426.

    Google Scholar 

  • Verissimo, M.A.A., R.A. Oliveira, S.D.A. Silva, E. Daros, and A. Härter. 2018. Genetic parameters and performance of sugarcane families under cold stress in the South of Brazil. Pesquisa Agropecuária Brasileira 53: 583–592.

    Article  Google Scholar 

  • Verissimo, M.A.A., A.A.C.D. Azeredo, B.P. Brasileiro, J.C. Bespalhok Filho, E. Daros, and R.A. Oliveira. 2020. Selection of sugarcane families and clones under cold stress. Ciência Rural 50: 1.

    Article  Google Scholar 

  • Weaich, K., M.M. Ludlow, and P.J. Nielsen. 1993. Identification of traits and germplasm to improve sugarcane resistance to frost damage. Proceedings of the Australian Society of Sugar Cane Technologists 15: 256–260.

    Google Scholar 

  • Zeni Neto, H., E. Daros, J.C. Bespalhok Filho, C.A. Scapim, M.C.G. Vidigal, and P.S. Vidigal Filho. 2013. Selection of families and parents of sugarcane (Saccharum spp.) through mixed models by joint analysis of two harvests. Euphytica 193: 391–408.

    Article  Google Scholar 

  • Zhang, B.Q., L.T. Yang, and Y.R. Li. 2015. Physiological and biochemical characteristics related to cold resistance in sugarcane. Sugar Tech 17: 49–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Coordination for the Improvement of Higher Education Personnel (CAPES), Brazilian Agricultural Research Corporation (EMBRAPA) and Sugar Cane Breeding Program (PMGCA) of the University of Paraná (UFPR), integrated into the Interuniversity Network for the Development of the Sugarcane Sector (RIDESA) for supporting research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adílson Härter.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Härter, A., dos Anjos e Silva, S.D., Verissimo, M.A.A. et al. Cold Tolerance in Sugarcane Progenies Under Natural Stress. Sugar Tech 23, 508–518 (2021). https://doi.org/10.1007/s12355-020-00912-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-020-00912-0

Keywords

Navigation